Mineral mass, size, and estimated mechanical strength of triple jumpers’ lower limb
This study was designed to examine the anticipated strong influence of extreme impact loading on the mineral mass, size, and gross structural properties of triple jumpers’ lower limb bones. We compared the bone data obtained with peripheral quantitative computed tomography (pQCT) and dual-energy X-r...
Gespeichert in:
Veröffentlicht in: | Bone (New York, N.Y.) N.Y.), 2001-09, Vol.29 (3), p.279-285 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 285 |
---|---|
container_issue | 3 |
container_start_page | 279 |
container_title | Bone (New York, N.Y.) |
container_volume | 29 |
creator | Heinonen, A Sievänen, H Kyröläinen, H Perttunen, J Kannus, P |
description | This study was designed to examine the anticipated strong influence of extreme impact loading on the mineral mass, size, and gross structural properties of triple jumpers’ lower limb bones. We compared the bone data obtained with peripheral quantitative computed tomography (pQCT) and dual-energy X-ray absorptiometry (DXA) from 8 Finnish triple jumpers with corresponding data from gender-, age-, height-, and weight-matched nonathletic peers. The volumetric (trabecular) density was significantly higher in the jumpers than in controls (from an average 18% difference at the distal tibia to a 41% difference at the proximal tibia), whereas the cortical density did not differ between groups. The DXA-derived areal bone mineral density of the femoral neck and lumbar spine was 31% higher in the jumpers than in controls, compared with a 16% difference between groups at the less-loaded distal radius. The lower limb bones were comparable in size between groups except at the distal femur where a significant 4%–6% difference was observed in favor of the triple jumpers. Mean tibial cortical wall thickness and area were substantially greater in the triple jumpers; the mean group difference ranged from about 20% at the shaft sites, to over 50% at the distal tibia. Given the apparently stronger cortices in the triple jumpers, the section moduli (bone strength index) of their femoral necks and tibiae were 19%–31% higher compared with the control group. Our findings indicate the ability of extreme impact loading to considerably improve bone’s mechanical competence. Adaptation to loading seems to occur in a site-specific fashion by gross geometric changes, structural or architectural changes, or by their combination. The loading effect was best seen as enlarged bone cortices, probably after the trabecular density had reached its ceiling. |
doi_str_mv | 10.1016/S8756-3282(01)00574-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71203273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S8756328201005749</els_id><sourcerecordid>71203273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-abb42aad82784b86a5e4d08dc28bb6522556be3fd5ed4d5d92594e747dc2dca33</originalsourceid><addsrcrecordid>eNqF0ctOGzEUgGELtYI08Aggb4paKQO-jj0rhCJ6kai6gKwtj30GjOYS7AkIVrxGX69PUpNEZcnKm-_YR78ROqTkhBJanl5pJcuCM82-EPqVEKlEUe2gCdWKF0yV_AOa_Cd76FNKd4QQXim6i_YolVJxxSdo8Sv0EG2LO5vSDKfwDDNse48hjaGzI3jcgbu1fXAZpTFCfzPe4qHBYwzLFvDdqltCTH9f_uB2eISI29DV--hjY9sEB9tzihbfLq7nP4rL399_zs8vCye0Hgtb14JZ6zVTWtS6tBKEJ9o7puu6lIxJWdbAGy_BCy99xWQlQAmVhXeW8yk63ty7jMP9Kq9supActK3tYVgloygjnKn3Ic0rlCVlGcoNdHFIKUJjljF3iE-GEvMa3qzDm9eqhlCzDm-qPHe0fWBVd-DfpralM_i8BTbllE20vQvpzQmSP46L7M42DnK3hwDRJBegd-BDBDcaP4R3VvkH-WSg4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18276612</pqid></control><display><type>article</type><title>Mineral mass, size, and estimated mechanical strength of triple jumpers’ lower limb</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Heinonen, A ; Sievänen, H ; Kyröläinen, H ; Perttunen, J ; Kannus, P</creator><creatorcontrib>Heinonen, A ; Sievänen, H ; Kyröläinen, H ; Perttunen, J ; Kannus, P</creatorcontrib><description>This study was designed to examine the anticipated strong influence of extreme impact loading on the mineral mass, size, and gross structural properties of triple jumpers’ lower limb bones. We compared the bone data obtained with peripheral quantitative computed tomography (pQCT) and dual-energy X-ray absorptiometry (DXA) from 8 Finnish triple jumpers with corresponding data from gender-, age-, height-, and weight-matched nonathletic peers. The volumetric (trabecular) density was significantly higher in the jumpers than in controls (from an average 18% difference at the distal tibia to a 41% difference at the proximal tibia), whereas the cortical density did not differ between groups. The DXA-derived areal bone mineral density of the femoral neck and lumbar spine was 31% higher in the jumpers than in controls, compared with a 16% difference between groups at the less-loaded distal radius. The lower limb bones were comparable in size between groups except at the distal femur where a significant 4%–6% difference was observed in favor of the triple jumpers. Mean tibial cortical wall thickness and area were substantially greater in the triple jumpers; the mean group difference ranged from about 20% at the shaft sites, to over 50% at the distal tibia. Given the apparently stronger cortices in the triple jumpers, the section moduli (bone strength index) of their femoral necks and tibiae were 19%–31% higher compared with the control group. Our findings indicate the ability of extreme impact loading to considerably improve bone’s mechanical competence. Adaptation to loading seems to occur in a site-specific fashion by gross geometric changes, structural or architectural changes, or by their combination. The loading effect was best seen as enlarged bone cortices, probably after the trabecular density had reached its ceiling.</description><identifier>ISSN: 8756-3282</identifier><identifier>EISSN: 1873-2763</identifier><identifier>DOI: 10.1016/S8756-3282(01)00574-9</identifier><identifier>PMID: 11557373</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Absorptiometry, Photon ; Adult ; Biological and medical sciences ; Bone Density ; Bone size ; Bone strength ; Extreme physical loading ; Female ; Femur Neck - anatomy & histology ; Femur Neck - diagnostic imaging ; Femur Neck - physiology ; Fundamental and applied biological sciences. Psychology ; Humans ; Male ; Peripheral quantitative computed tomography (pQCT) ; Skeleton and joints ; Tibia - anatomy & histology ; Tibia - diagnostic imaging ; Tibia - physiology ; Track and Field ; Vertebrates: osteoarticular system, musculoskeletal system ; Volumetric density ; Weight-Bearing</subject><ispartof>Bone (New York, N.Y.), 2001-09, Vol.29 (3), p.279-285</ispartof><rights>2001 Elsevier Science Inc.</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-abb42aad82784b86a5e4d08dc28bb6522556be3fd5ed4d5d92594e747dc2dca33</citedby><cites>FETCH-LOGICAL-c488t-abb42aad82784b86a5e4d08dc28bb6522556be3fd5ed4d5d92594e747dc2dca33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S8756328201005749$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14087334$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11557373$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heinonen, A</creatorcontrib><creatorcontrib>Sievänen, H</creatorcontrib><creatorcontrib>Kyröläinen, H</creatorcontrib><creatorcontrib>Perttunen, J</creatorcontrib><creatorcontrib>Kannus, P</creatorcontrib><title>Mineral mass, size, and estimated mechanical strength of triple jumpers’ lower limb</title><title>Bone (New York, N.Y.)</title><addtitle>Bone</addtitle><description>This study was designed to examine the anticipated strong influence of extreme impact loading on the mineral mass, size, and gross structural properties of triple jumpers’ lower limb bones. We compared the bone data obtained with peripheral quantitative computed tomography (pQCT) and dual-energy X-ray absorptiometry (DXA) from 8 Finnish triple jumpers with corresponding data from gender-, age-, height-, and weight-matched nonathletic peers. The volumetric (trabecular) density was significantly higher in the jumpers than in controls (from an average 18% difference at the distal tibia to a 41% difference at the proximal tibia), whereas the cortical density did not differ between groups. The DXA-derived areal bone mineral density of the femoral neck and lumbar spine was 31% higher in the jumpers than in controls, compared with a 16% difference between groups at the less-loaded distal radius. The lower limb bones were comparable in size between groups except at the distal femur where a significant 4%–6% difference was observed in favor of the triple jumpers. Mean tibial cortical wall thickness and area were substantially greater in the triple jumpers; the mean group difference ranged from about 20% at the shaft sites, to over 50% at the distal tibia. Given the apparently stronger cortices in the triple jumpers, the section moduli (bone strength index) of their femoral necks and tibiae were 19%–31% higher compared with the control group. Our findings indicate the ability of extreme impact loading to considerably improve bone’s mechanical competence. Adaptation to loading seems to occur in a site-specific fashion by gross geometric changes, structural or architectural changes, or by their combination. The loading effect was best seen as enlarged bone cortices, probably after the trabecular density had reached its ceiling.</description><subject>Absorptiometry, Photon</subject><subject>Adult</subject><subject>Biological and medical sciences</subject><subject>Bone Density</subject><subject>Bone size</subject><subject>Bone strength</subject><subject>Extreme physical loading</subject><subject>Female</subject><subject>Femur Neck - anatomy & histology</subject><subject>Femur Neck - diagnostic imaging</subject><subject>Femur Neck - physiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Male</subject><subject>Peripheral quantitative computed tomography (pQCT)</subject><subject>Skeleton and joints</subject><subject>Tibia - anatomy & histology</subject><subject>Tibia - diagnostic imaging</subject><subject>Tibia - physiology</subject><subject>Track and Field</subject><subject>Vertebrates: osteoarticular system, musculoskeletal system</subject><subject>Volumetric density</subject><subject>Weight-Bearing</subject><issn>8756-3282</issn><issn>1873-2763</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0ctOGzEUgGELtYI08Aggb4paKQO-jj0rhCJ6kai6gKwtj30GjOYS7AkIVrxGX69PUpNEZcnKm-_YR78ROqTkhBJanl5pJcuCM82-EPqVEKlEUe2gCdWKF0yV_AOa_Cd76FNKd4QQXim6i_YolVJxxSdo8Sv0EG2LO5vSDKfwDDNse48hjaGzI3jcgbu1fXAZpTFCfzPe4qHBYwzLFvDdqltCTH9f_uB2eISI29DV--hjY9sEB9tzihbfLq7nP4rL399_zs8vCye0Hgtb14JZ6zVTWtS6tBKEJ9o7puu6lIxJWdbAGy_BCy99xWQlQAmVhXeW8yk63ty7jMP9Kq9supActK3tYVgloygjnKn3Ic0rlCVlGcoNdHFIKUJjljF3iE-GEvMa3qzDm9eqhlCzDm-qPHe0fWBVd-DfpralM_i8BTbllE20vQvpzQmSP46L7M42DnK3hwDRJBegd-BDBDcaP4R3VvkH-WSg4g</recordid><startdate>20010901</startdate><enddate>20010901</enddate><creator>Heinonen, A</creator><creator>Sievänen, H</creator><creator>Kyröläinen, H</creator><creator>Perttunen, J</creator><creator>Kannus, P</creator><general>Elsevier Inc</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TS</scope><scope>7X8</scope></search><sort><creationdate>20010901</creationdate><title>Mineral mass, size, and estimated mechanical strength of triple jumpers’ lower limb</title><author>Heinonen, A ; Sievänen, H ; Kyröläinen, H ; Perttunen, J ; Kannus, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-abb42aad82784b86a5e4d08dc28bb6522556be3fd5ed4d5d92594e747dc2dca33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Absorptiometry, Photon</topic><topic>Adult</topic><topic>Biological and medical sciences</topic><topic>Bone Density</topic><topic>Bone size</topic><topic>Bone strength</topic><topic>Extreme physical loading</topic><topic>Female</topic><topic>Femur Neck - anatomy & histology</topic><topic>Femur Neck - diagnostic imaging</topic><topic>Femur Neck - physiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Male</topic><topic>Peripheral quantitative computed tomography (pQCT)</topic><topic>Skeleton and joints</topic><topic>Tibia - anatomy & histology</topic><topic>Tibia - diagnostic imaging</topic><topic>Tibia - physiology</topic><topic>Track and Field</topic><topic>Vertebrates: osteoarticular system, musculoskeletal system</topic><topic>Volumetric density</topic><topic>Weight-Bearing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heinonen, A</creatorcontrib><creatorcontrib>Sievänen, H</creatorcontrib><creatorcontrib>Kyröläinen, H</creatorcontrib><creatorcontrib>Perttunen, J</creatorcontrib><creatorcontrib>Kannus, P</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Physical Education Index</collection><collection>MEDLINE - Academic</collection><jtitle>Bone (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heinonen, A</au><au>Sievänen, H</au><au>Kyröläinen, H</au><au>Perttunen, J</au><au>Kannus, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mineral mass, size, and estimated mechanical strength of triple jumpers’ lower limb</atitle><jtitle>Bone (New York, N.Y.)</jtitle><addtitle>Bone</addtitle><date>2001-09-01</date><risdate>2001</risdate><volume>29</volume><issue>3</issue><spage>279</spage><epage>285</epage><pages>279-285</pages><issn>8756-3282</issn><eissn>1873-2763</eissn><abstract>This study was designed to examine the anticipated strong influence of extreme impact loading on the mineral mass, size, and gross structural properties of triple jumpers’ lower limb bones. We compared the bone data obtained with peripheral quantitative computed tomography (pQCT) and dual-energy X-ray absorptiometry (DXA) from 8 Finnish triple jumpers with corresponding data from gender-, age-, height-, and weight-matched nonathletic peers. The volumetric (trabecular) density was significantly higher in the jumpers than in controls (from an average 18% difference at the distal tibia to a 41% difference at the proximal tibia), whereas the cortical density did not differ between groups. The DXA-derived areal bone mineral density of the femoral neck and lumbar spine was 31% higher in the jumpers than in controls, compared with a 16% difference between groups at the less-loaded distal radius. The lower limb bones were comparable in size between groups except at the distal femur where a significant 4%–6% difference was observed in favor of the triple jumpers. Mean tibial cortical wall thickness and area were substantially greater in the triple jumpers; the mean group difference ranged from about 20% at the shaft sites, to over 50% at the distal tibia. Given the apparently stronger cortices in the triple jumpers, the section moduli (bone strength index) of their femoral necks and tibiae were 19%–31% higher compared with the control group. Our findings indicate the ability of extreme impact loading to considerably improve bone’s mechanical competence. Adaptation to loading seems to occur in a site-specific fashion by gross geometric changes, structural or architectural changes, or by their combination. The loading effect was best seen as enlarged bone cortices, probably after the trabecular density had reached its ceiling.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><pmid>11557373</pmid><doi>10.1016/S8756-3282(01)00574-9</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8756-3282 |
ispartof | Bone (New York, N.Y.), 2001-09, Vol.29 (3), p.279-285 |
issn | 8756-3282 1873-2763 |
language | eng |
recordid | cdi_proquest_miscellaneous_71203273 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Absorptiometry, Photon Adult Biological and medical sciences Bone Density Bone size Bone strength Extreme physical loading Female Femur Neck - anatomy & histology Femur Neck - diagnostic imaging Femur Neck - physiology Fundamental and applied biological sciences. Psychology Humans Male Peripheral quantitative computed tomography (pQCT) Skeleton and joints Tibia - anatomy & histology Tibia - diagnostic imaging Tibia - physiology Track and Field Vertebrates: osteoarticular system, musculoskeletal system Volumetric density Weight-Bearing |
title | Mineral mass, size, and estimated mechanical strength of triple jumpers’ lower limb |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A22%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mineral%20mass,%20size,%20and%20estimated%20mechanical%20strength%20of%20triple%20jumpers%E2%80%99%20lower%20limb&rft.jtitle=Bone%20(New%20York,%20N.Y.)&rft.au=Heinonen,%20A&rft.date=2001-09-01&rft.volume=29&rft.issue=3&rft.spage=279&rft.epage=285&rft.pages=279-285&rft.issn=8756-3282&rft.eissn=1873-2763&rft_id=info:doi/10.1016/S8756-3282(01)00574-9&rft_dat=%3Cproquest_cross%3E71203273%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18276612&rft_id=info:pmid/11557373&rft_els_id=S8756328201005749&rfr_iscdi=true |