Data model for the elimination of matrix effects in enzyme-based flow-injection systems

This contribution presents a new conceptional enzyme‐based flow injection analysis (FIA) system for the process and quality control of food processing and biotechnological systems. It provides the determination of different analytes in distinct process media on the base of a common experimental set‐...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 2000-08, Vol.69 (4), p.377-384
Hauptverfasser: Becker, Thomas Matthias, Schmidt, Hanns-Ludwig
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 384
container_issue 4
container_start_page 377
container_title Biotechnology and bioengineering
container_volume 69
creator Becker, Thomas Matthias
Schmidt, Hanns-Ludwig
description This contribution presents a new conceptional enzyme‐based flow injection analysis (FIA) system for the process and quality control of food processing and biotechnological systems. It provides the determination of different analytes in distinct process media on the base of a common experimental set‐up. In contrast to known comparable systems, analysis is performed without the commonly used sample preparation and dilution steps. Instead, the adaptation to the necessary measurement range is realized by optimization of intrinsic system parameters. The central principle of the work presented is the elimination of occurring interferences by the heterogenous matrix of the process sample. Based on a particular injection mode, the application of dehydrogenases as indicator enzymes and a specially developed data model using cognitive methods, cross sensitivities of the detector as well as disturbed reaction rates of the enzymes could be almost completely compensated. Two applications are presented, the analysis of ethanol in non‐alcoholic beer and the online determination of D‐/L‐lactate during a lactic acid fermentation, which reveal the advantage of the developed system. © 2000 John Wiley & Sons, Inc. Biotechnol Bioeng 69: 377–384, 2000.
doi_str_mv 10.1002/1097-0290(20000820)69:4<377::AID-BIT4>3.0.CO;2-O
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71202037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17665081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4364-321ca77bab5a413e4348f8f47f1cd5116a5a7a46965d4a3bdd258aaa78e7c18a3</originalsourceid><addsrcrecordid>eNqVkV1v0zAUhiMEYmXwF1AuEIKLFH_FdjqENDpWKlULSEOVenN0mtjCIx8jTrWVX49DyuACacI31pGf855jPVGkKZlSQtgbSjKVEJaRV4yEoxl5LbOZeMuVms1Ol2fJ--WleMenZDrPT1iSP4gmdy0Po0lokQlPM3YUPfH-KpRKS_k4OqJESyaVnETrM-wxrtvSVLFtu7j_amJTudo12Lu2iVsb19h37jY21pqi97FrYtP82Ncm2aI3ZWyr9iZxzVV4HBr83vem9k-jRxYrb54d7uPoy_mHy_nHZJUvlvPTVVIILkXCGS1QqS1uUxSUG8GFttoKZWlRppRKTFGhkJlMS4F8W5Ys1YiotFEF1ciPo5dj7nXXft8Z30PtfGGqChvT7jwoyggjXN0LMipSTjS5F6RKypRoGsBPI1h0rfedsXDduRq7PVACgz4YXMDgAn7rA5mBgKAPIOiDQR9wIDDPgUEeIp8fZu-2tSn_Chx9BeDFAUBfYGU7bArn_3BCDn8N2OcRu3GV2f_XXv9Y61cdMpMx0wXBt3eZ2H0DqbhKYX2xgGyx2WwuVms45z8B4NjODw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17665081</pqid></control><display><type>article</type><title>Data model for the elimination of matrix effects in enzyme-based flow-injection systems</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Becker, Thomas Matthias ; Schmidt, Hanns-Ludwig</creator><creatorcontrib>Becker, Thomas Matthias ; Schmidt, Hanns-Ludwig</creatorcontrib><description>This contribution presents a new conceptional enzyme‐based flow injection analysis (FIA) system for the process and quality control of food processing and biotechnological systems. It provides the determination of different analytes in distinct process media on the base of a common experimental set‐up. In contrast to known comparable systems, analysis is performed without the commonly used sample preparation and dilution steps. Instead, the adaptation to the necessary measurement range is realized by optimization of intrinsic system parameters. The central principle of the work presented is the elimination of occurring interferences by the heterogenous matrix of the process sample. Based on a particular injection mode, the application of dehydrogenases as indicator enzymes and a specially developed data model using cognitive methods, cross sensitivities of the detector as well as disturbed reaction rates of the enzymes could be almost completely compensated. Two applications are presented, the analysis of ethanol in non‐alcoholic beer and the online determination of D‐/L‐lactate during a lactic acid fermentation, which reveal the advantage of the developed system. © 2000 John Wiley &amp; Sons, Inc. Biotechnol Bioeng 69: 377–384, 2000.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/1097-0290(20000820)69:4&lt;377::AID-BIT4&gt;3.0.CO;2-O</identifier><identifier>PMID: 10862676</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Inc</publisher><subject>Alanine Transaminase - chemistry ; Alcohol Dehydrogenase - chemistry ; Algorithms ; Animals ; artificial neural network ; Automatic Data Processing ; Beer - analysis ; Biological and medical sciences ; Bioreactors ; Biotechnology ; Cognitive systems ; dehydrogenase ; Enzymes ; Enzymes - chemistry ; enzymology ; Ethanol ; Ethanol - analysis ; Fermentation ; flow-injection analysis ; Food Analysis ; Fundamental and applied biological sciences. Psychology ; Fuzzy Logic ; Fuzzy sets ; Horses ; In Vitro Techniques ; L-Lactate Dehydrogenase - chemistry ; lactic acid ; Lactic Acid - metabolism ; Leuconostoc - chemistry ; Methods. Procedures. Technologies ; Models, Biological ; Models, Theoretical ; Neural networks ; Optimization ; Others ; Parameter estimation ; process control ; Pseudomonas putida - chemistry ; Rabbits ; Systems analysis ; Various methods and equipments</subject><ispartof>Biotechnology and bioengineering, 2000-08, Vol.69 (4), p.377-384</ispartof><rights>Copyright © 2000 John Wiley &amp; Sons, Inc.</rights><rights>2000 INIST-CNRS</rights><rights>Copyright 2000 John Wiley &amp; Sons, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4364-321ca77bab5a413e4348f8f47f1cd5116a5a7a46965d4a3bdd258aaa78e7c18a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F1097-0290%2820000820%2969%3A4%3C377%3A%3AAID-BIT4%3E3.0.CO%3B2-O$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F1097-0290%2820000820%2969%3A4%3C377%3A%3AAID-BIT4%3E3.0.CO%3B2-O$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1460373$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10862676$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Becker, Thomas Matthias</creatorcontrib><creatorcontrib>Schmidt, Hanns-Ludwig</creatorcontrib><title>Data model for the elimination of matrix effects in enzyme-based flow-injection systems</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>This contribution presents a new conceptional enzyme‐based flow injection analysis (FIA) system for the process and quality control of food processing and biotechnological systems. It provides the determination of different analytes in distinct process media on the base of a common experimental set‐up. In contrast to known comparable systems, analysis is performed without the commonly used sample preparation and dilution steps. Instead, the adaptation to the necessary measurement range is realized by optimization of intrinsic system parameters. The central principle of the work presented is the elimination of occurring interferences by the heterogenous matrix of the process sample. Based on a particular injection mode, the application of dehydrogenases as indicator enzymes and a specially developed data model using cognitive methods, cross sensitivities of the detector as well as disturbed reaction rates of the enzymes could be almost completely compensated. Two applications are presented, the analysis of ethanol in non‐alcoholic beer and the online determination of D‐/L‐lactate during a lactic acid fermentation, which reveal the advantage of the developed system. © 2000 John Wiley &amp; Sons, Inc. Biotechnol Bioeng 69: 377–384, 2000.</description><subject>Alanine Transaminase - chemistry</subject><subject>Alcohol Dehydrogenase - chemistry</subject><subject>Algorithms</subject><subject>Animals</subject><subject>artificial neural network</subject><subject>Automatic Data Processing</subject><subject>Beer - analysis</subject><subject>Biological and medical sciences</subject><subject>Bioreactors</subject><subject>Biotechnology</subject><subject>Cognitive systems</subject><subject>dehydrogenase</subject><subject>Enzymes</subject><subject>Enzymes - chemistry</subject><subject>enzymology</subject><subject>Ethanol</subject><subject>Ethanol - analysis</subject><subject>Fermentation</subject><subject>flow-injection analysis</subject><subject>Food Analysis</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fuzzy Logic</subject><subject>Fuzzy sets</subject><subject>Horses</subject><subject>In Vitro Techniques</subject><subject>L-Lactate Dehydrogenase - chemistry</subject><subject>lactic acid</subject><subject>Lactic Acid - metabolism</subject><subject>Leuconostoc - chemistry</subject><subject>Methods. Procedures. Technologies</subject><subject>Models, Biological</subject><subject>Models, Theoretical</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Others</subject><subject>Parameter estimation</subject><subject>process control</subject><subject>Pseudomonas putida - chemistry</subject><subject>Rabbits</subject><subject>Systems analysis</subject><subject>Various methods and equipments</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqVkV1v0zAUhiMEYmXwF1AuEIKLFH_FdjqENDpWKlULSEOVenN0mtjCIx8jTrWVX49DyuACacI31pGf855jPVGkKZlSQtgbSjKVEJaRV4yEoxl5LbOZeMuVms1Ol2fJ--WleMenZDrPT1iSP4gmdy0Po0lokQlPM3YUPfH-KpRKS_k4OqJESyaVnETrM-wxrtvSVLFtu7j_amJTudo12Lu2iVsb19h37jY21pqi97FrYtP82Ncm2aI3ZWyr9iZxzVV4HBr83vem9k-jRxYrb54d7uPoy_mHy_nHZJUvlvPTVVIILkXCGS1QqS1uUxSUG8GFttoKZWlRppRKTFGhkJlMS4F8W5Ys1YiotFEF1ciPo5dj7nXXft8Z30PtfGGqChvT7jwoyggjXN0LMipSTjS5F6RKypRoGsBPI1h0rfedsXDduRq7PVACgz4YXMDgAn7rA5mBgKAPIOiDQR9wIDDPgUEeIp8fZu-2tSn_Chx9BeDFAUBfYGU7bArn_3BCDn8N2OcRu3GV2f_XXv9Y61cdMpMx0wXBt3eZ2H0DqbhKYX2xgGyx2WwuVms45z8B4NjODw</recordid><startdate>20000820</startdate><enddate>20000820</enddate><creator>Becker, Thomas Matthias</creator><creator>Schmidt, Hanns-Ludwig</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20000820</creationdate><title>Data model for the elimination of matrix effects in enzyme-based flow-injection systems</title><author>Becker, Thomas Matthias ; Schmidt, Hanns-Ludwig</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4364-321ca77bab5a413e4348f8f47f1cd5116a5a7a46965d4a3bdd258aaa78e7c18a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Alanine Transaminase - chemistry</topic><topic>Alcohol Dehydrogenase - chemistry</topic><topic>Algorithms</topic><topic>Animals</topic><topic>artificial neural network</topic><topic>Automatic Data Processing</topic><topic>Beer - analysis</topic><topic>Biological and medical sciences</topic><topic>Bioreactors</topic><topic>Biotechnology</topic><topic>Cognitive systems</topic><topic>dehydrogenase</topic><topic>Enzymes</topic><topic>Enzymes - chemistry</topic><topic>enzymology</topic><topic>Ethanol</topic><topic>Ethanol - analysis</topic><topic>Fermentation</topic><topic>flow-injection analysis</topic><topic>Food Analysis</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fuzzy Logic</topic><topic>Fuzzy sets</topic><topic>Horses</topic><topic>In Vitro Techniques</topic><topic>L-Lactate Dehydrogenase - chemistry</topic><topic>lactic acid</topic><topic>Lactic Acid - metabolism</topic><topic>Leuconostoc - chemistry</topic><topic>Methods. Procedures. Technologies</topic><topic>Models, Biological</topic><topic>Models, Theoretical</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Others</topic><topic>Parameter estimation</topic><topic>process control</topic><topic>Pseudomonas putida - chemistry</topic><topic>Rabbits</topic><topic>Systems analysis</topic><topic>Various methods and equipments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Becker, Thomas Matthias</creatorcontrib><creatorcontrib>Schmidt, Hanns-Ludwig</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Becker, Thomas Matthias</au><au>Schmidt, Hanns-Ludwig</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data model for the elimination of matrix effects in enzyme-based flow-injection systems</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2000-08-20</date><risdate>2000</risdate><volume>69</volume><issue>4</issue><spage>377</spage><epage>384</epage><pages>377-384</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>This contribution presents a new conceptional enzyme‐based flow injection analysis (FIA) system for the process and quality control of food processing and biotechnological systems. It provides the determination of different analytes in distinct process media on the base of a common experimental set‐up. In contrast to known comparable systems, analysis is performed without the commonly used sample preparation and dilution steps. Instead, the adaptation to the necessary measurement range is realized by optimization of intrinsic system parameters. The central principle of the work presented is the elimination of occurring interferences by the heterogenous matrix of the process sample. Based on a particular injection mode, the application of dehydrogenases as indicator enzymes and a specially developed data model using cognitive methods, cross sensitivities of the detector as well as disturbed reaction rates of the enzymes could be almost completely compensated. Two applications are presented, the analysis of ethanol in non‐alcoholic beer and the online determination of D‐/L‐lactate during a lactic acid fermentation, which reveal the advantage of the developed system. © 2000 John Wiley &amp; Sons, Inc. Biotechnol Bioeng 69: 377–384, 2000.</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>10862676</pmid><doi>10.1002/1097-0290(20000820)69:4&lt;377::AID-BIT4&gt;3.0.CO;2-O</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2000-08, Vol.69 (4), p.377-384
issn 0006-3592
1097-0290
language eng
recordid cdi_proquest_miscellaneous_71202037
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Alanine Transaminase - chemistry
Alcohol Dehydrogenase - chemistry
Algorithms
Animals
artificial neural network
Automatic Data Processing
Beer - analysis
Biological and medical sciences
Bioreactors
Biotechnology
Cognitive systems
dehydrogenase
Enzymes
Enzymes - chemistry
enzymology
Ethanol
Ethanol - analysis
Fermentation
flow-injection analysis
Food Analysis
Fundamental and applied biological sciences. Psychology
Fuzzy Logic
Fuzzy sets
Horses
In Vitro Techniques
L-Lactate Dehydrogenase - chemistry
lactic acid
Lactic Acid - metabolism
Leuconostoc - chemistry
Methods. Procedures. Technologies
Models, Biological
Models, Theoretical
Neural networks
Optimization
Others
Parameter estimation
process control
Pseudomonas putida - chemistry
Rabbits
Systems analysis
Various methods and equipments
title Data model for the elimination of matrix effects in enzyme-based flow-injection systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A13%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20model%20for%20the%20elimination%20of%20matrix%20effects%20in%20enzyme-based%20flow-injection%20systems&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Becker,%20Thomas%20Matthias&rft.date=2000-08-20&rft.volume=69&rft.issue=4&rft.spage=377&rft.epage=384&rft.pages=377-384&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/1097-0290(20000820)69:4%3C377::AID-BIT4%3E3.0.CO;2-O&rft_dat=%3Cproquest_cross%3E17665081%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17665081&rft_id=info:pmid/10862676&rfr_iscdi=true