Accumulation of palmitate in Arabidopsis mediated by the acyl-acyl carrier protein thioesterase FATB1

The acyl-acyl carrier protein thioesterase B1 from Arabidopsis (AtFATB1) was previously shown to exhibit in vitro hydrolytic activity for long chain acyl-acyl carrier proteins (P. Dörmann, T.A. Voelker, J.B. Ohlrogge [1995] Arch Biochem Biophys 316: 612-618). In this study, we address the question o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2000-06, Vol.123 (2), p.637-643
Hauptverfasser: DÖRMANN, P, VOELKER, T. A, OHLROGGE, J. B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 643
container_issue 2
container_start_page 637
container_title Plant physiology (Bethesda)
container_volume 123
creator DÖRMANN, P
VOELKER, T. A
OHLROGGE, J. B
description The acyl-acyl carrier protein thioesterase B1 from Arabidopsis (AtFATB1) was previously shown to exhibit in vitro hydrolytic activity for long chain acyl-acyl carrier proteins (P. Dörmann, T.A. Voelker, J.B. Ohlrogge [1995] Arch Biochem Biophys 316: 612-618). In this study, we address the question of which role in fatty acid biosynthesis this enzyme plays within the plant. Over-expression of the AtFATB1 cDNA under a seed-specific promoter resulted in accumulation of high amounts of palmitate (16:0) in seeds. RNA and protein-blot analysis in Arabidopsis and rapeseed (Brassica napus) showed that the endogenous AtFATB1 expression was highest in flowers and lower in leaves. All floral tissues of wild-type plants contained elevated amounts of 16:0, and in the polar lipid fraction of flowers close to 50 mol % of the fatty acids were 16:0. Therefore, flowers contain polar lipids with an unusually high amount of saturated fatty acids as compared to all other plant tissues. Antisense expression of the AtFATB1 cDNA under the cauliflower mosaic virus 35S promoter resulted in a reduction of seed and flower 16:0 content, but no changes in leaf fatty acids. We conclude that the AtFATB1 thioesterase contributes to 16:0 production particularly in flowers, but that additional factors are involved in leaves.
doi_str_mv 10.1104/pp.123.2.637
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71201990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>55323627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-9ebc41bedf3db50eb6dfb517a9ba28e2f8cba85e5504c600839147890cd5df3a3</originalsourceid><addsrcrecordid>eNpdkElrHDEQRkWwscfLLecgTPDJPS5t09JxYuIFDLk4ZyGpq7FMb5G6D_PvLWcGEnypKopXxccj5CuDNWMgb6dpzbhY8_VG1F_IiinBK66kPiIrgDKD1uaUnOX8BgBMMHlCThloZZgRK4LbEJZ-6dwcx4GOLZ1c18fZzUjjQLfJ-diMU46Z9tjEsm6o39H5FakLu676KDS4lCImOqVxxnI1v8YR84zJZaT325cf7IIct67LeHno5-T3_c-Xu8fq-dfD0932uQpSi7ky6INkHptWNF4B-k3TesVqZ7zjGnmrg3daoVIgwwZAC8NkrQ2ERpUbJ87J9f5vifJnKRlsH3PArnMDjku2NePAjIECXn0C38YlDSWb5UxvuIK_0M0eCmnMOWFrpxR7l3aWgf1wb6fJFveW2-K-4N8OPxdfZP0H72UX4PsBcDm4rk1uCDH_4yRIqIV4B38zjH4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218625090</pqid></control><display><type>article</type><title>Accumulation of palmitate in Arabidopsis mediated by the acyl-acyl carrier protein thioesterase FATB1</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>DÖRMANN, P ; VOELKER, T. A ; OHLROGGE, J. B</creator><creatorcontrib>DÖRMANN, P ; VOELKER, T. A ; OHLROGGE, J. B</creatorcontrib><description>The acyl-acyl carrier protein thioesterase B1 from Arabidopsis (AtFATB1) was previously shown to exhibit in vitro hydrolytic activity for long chain acyl-acyl carrier proteins (P. Dörmann, T.A. Voelker, J.B. Ohlrogge [1995] Arch Biochem Biophys 316: 612-618). In this study, we address the question of which role in fatty acid biosynthesis this enzyme plays within the plant. Over-expression of the AtFATB1 cDNA under a seed-specific promoter resulted in accumulation of high amounts of palmitate (16:0) in seeds. RNA and protein-blot analysis in Arabidopsis and rapeseed (Brassica napus) showed that the endogenous AtFATB1 expression was highest in flowers and lower in leaves. All floral tissues of wild-type plants contained elevated amounts of 16:0, and in the polar lipid fraction of flowers close to 50 mol % of the fatty acids were 16:0. Therefore, flowers contain polar lipids with an unusually high amount of saturated fatty acids as compared to all other plant tissues. Antisense expression of the AtFATB1 cDNA under the cauliflower mosaic virus 35S promoter resulted in a reduction of seed and flower 16:0 content, but no changes in leaf fatty acids. We conclude that the AtFATB1 thioesterase contributes to 16:0 production particularly in flowers, but that additional factors are involved in leaves.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.123.2.637</identifier><identifier>PMID: 10859193</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Physiologists</publisher><subject>Agronomy. Soil science and plant productions ; Arabidopsis - metabolism ; Arabidopsis Proteins ; Base Sequence ; Biological and medical sciences ; Biosynthesis ; DNA Primers ; Economic plant physiology ; Fatty acids ; Flowers ; Fundamental and applied biological sciences. Psychology ; Gene Expression ; Leaves ; Lipid Metabolism ; Lipids ; Metabolism ; Metabolism. Physicochemical requirements ; Nitrogen metabolism and other ones (excepting carbon metabolism) ; Nutrition. Photosynthesis. Respiration. Metabolism ; Palmitic Acid - metabolism ; Plant physiology and development ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant tissues ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Thiolester Hydrolases - genetics ; Thiolester Hydrolases - metabolism</subject><ispartof>Plant physiology (Bethesda), 2000-06, Vol.123 (2), p.637-643</ispartof><rights>2000 INIST-CNRS</rights><rights>Copyright American Society of Plant Physiologists Jun 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-9ebc41bedf3db50eb6dfb517a9ba28e2f8cba85e5504c600839147890cd5df3a3</citedby><cites>FETCH-LOGICAL-c483t-9ebc41bedf3db50eb6dfb517a9ba28e2f8cba85e5504c600839147890cd5df3a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1404073$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10859193$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>DÖRMANN, P</creatorcontrib><creatorcontrib>VOELKER, T. A</creatorcontrib><creatorcontrib>OHLROGGE, J. B</creatorcontrib><title>Accumulation of palmitate in Arabidopsis mediated by the acyl-acyl carrier protein thioesterase FATB1</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>The acyl-acyl carrier protein thioesterase B1 from Arabidopsis (AtFATB1) was previously shown to exhibit in vitro hydrolytic activity for long chain acyl-acyl carrier proteins (P. Dörmann, T.A. Voelker, J.B. Ohlrogge [1995] Arch Biochem Biophys 316: 612-618). In this study, we address the question of which role in fatty acid biosynthesis this enzyme plays within the plant. Over-expression of the AtFATB1 cDNA under a seed-specific promoter resulted in accumulation of high amounts of palmitate (16:0) in seeds. RNA and protein-blot analysis in Arabidopsis and rapeseed (Brassica napus) showed that the endogenous AtFATB1 expression was highest in flowers and lower in leaves. All floral tissues of wild-type plants contained elevated amounts of 16:0, and in the polar lipid fraction of flowers close to 50 mol % of the fatty acids were 16:0. Therefore, flowers contain polar lipids with an unusually high amount of saturated fatty acids as compared to all other plant tissues. Antisense expression of the AtFATB1 cDNA under the cauliflower mosaic virus 35S promoter resulted in a reduction of seed and flower 16:0 content, but no changes in leaf fatty acids. We conclude that the AtFATB1 thioesterase contributes to 16:0 production particularly in flowers, but that additional factors are involved in leaves.</description><subject>Agronomy. Soil science and plant productions</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Biosynthesis</subject><subject>DNA Primers</subject><subject>Economic plant physiology</subject><subject>Fatty acids</subject><subject>Flowers</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression</subject><subject>Leaves</subject><subject>Lipid Metabolism</subject><subject>Lipids</subject><subject>Metabolism</subject><subject>Metabolism. Physicochemical requirements</subject><subject>Nitrogen metabolism and other ones (excepting carbon metabolism)</subject><subject>Nutrition. Photosynthesis. Respiration. Metabolism</subject><subject>Palmitic Acid - metabolism</subject><subject>Plant physiology and development</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant tissues</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Thiolester Hydrolases - genetics</subject><subject>Thiolester Hydrolases - metabolism</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkElrHDEQRkWwscfLLecgTPDJPS5t09JxYuIFDLk4ZyGpq7FMb5G6D_PvLWcGEnypKopXxccj5CuDNWMgb6dpzbhY8_VG1F_IiinBK66kPiIrgDKD1uaUnOX8BgBMMHlCThloZZgRK4LbEJZ-6dwcx4GOLZ1c18fZzUjjQLfJ-diMU46Z9tjEsm6o39H5FakLu676KDS4lCImOqVxxnI1v8YR84zJZaT325cf7IIct67LeHno5-T3_c-Xu8fq-dfD0932uQpSi7ky6INkHptWNF4B-k3TesVqZ7zjGnmrg3daoVIgwwZAC8NkrQ2ERpUbJ87J9f5vifJnKRlsH3PArnMDjku2NePAjIECXn0C38YlDSWb5UxvuIK_0M0eCmnMOWFrpxR7l3aWgf1wb6fJFveW2-K-4N8OPxdfZP0H72UX4PsBcDm4rk1uCDH_4yRIqIV4B38zjH4</recordid><startdate>20000601</startdate><enddate>20000601</enddate><creator>DÖRMANN, P</creator><creator>VOELKER, T. A</creator><creator>OHLROGGE, J. B</creator><general>American Society of Plant Physiologists</general><general>American Society of Plant Biologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope></search><sort><creationdate>20000601</creationdate><title>Accumulation of palmitate in Arabidopsis mediated by the acyl-acyl carrier protein thioesterase FATB1</title><author>DÖRMANN, P ; VOELKER, T. A ; OHLROGGE, J. B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-9ebc41bedf3db50eb6dfb517a9ba28e2f8cba85e5504c600839147890cd5df3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Agronomy. Soil science and plant productions</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Biosynthesis</topic><topic>DNA Primers</topic><topic>Economic plant physiology</topic><topic>Fatty acids</topic><topic>Flowers</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression</topic><topic>Leaves</topic><topic>Lipid Metabolism</topic><topic>Lipids</topic><topic>Metabolism</topic><topic>Metabolism. Physicochemical requirements</topic><topic>Nitrogen metabolism and other ones (excepting carbon metabolism)</topic><topic>Nutrition. Photosynthesis. Respiration. Metabolism</topic><topic>Palmitic Acid - metabolism</topic><topic>Plant physiology and development</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant tissues</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Thiolester Hydrolases - genetics</topic><topic>Thiolester Hydrolases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DÖRMANN, P</creatorcontrib><creatorcontrib>VOELKER, T. A</creatorcontrib><creatorcontrib>OHLROGGE, J. B</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DÖRMANN, P</au><au>VOELKER, T. A</au><au>OHLROGGE, J. B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accumulation of palmitate in Arabidopsis mediated by the acyl-acyl carrier protein thioesterase FATB1</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2000-06-01</date><risdate>2000</risdate><volume>123</volume><issue>2</issue><spage>637</spage><epage>643</epage><pages>637-643</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>The acyl-acyl carrier protein thioesterase B1 from Arabidopsis (AtFATB1) was previously shown to exhibit in vitro hydrolytic activity for long chain acyl-acyl carrier proteins (P. Dörmann, T.A. Voelker, J.B. Ohlrogge [1995] Arch Biochem Biophys 316: 612-618). In this study, we address the question of which role in fatty acid biosynthesis this enzyme plays within the plant. Over-expression of the AtFATB1 cDNA under a seed-specific promoter resulted in accumulation of high amounts of palmitate (16:0) in seeds. RNA and protein-blot analysis in Arabidopsis and rapeseed (Brassica napus) showed that the endogenous AtFATB1 expression was highest in flowers and lower in leaves. All floral tissues of wild-type plants contained elevated amounts of 16:0, and in the polar lipid fraction of flowers close to 50 mol % of the fatty acids were 16:0. Therefore, flowers contain polar lipids with an unusually high amount of saturated fatty acids as compared to all other plant tissues. Antisense expression of the AtFATB1 cDNA under the cauliflower mosaic virus 35S promoter resulted in a reduction of seed and flower 16:0 content, but no changes in leaf fatty acids. We conclude that the AtFATB1 thioesterase contributes to 16:0 production particularly in flowers, but that additional factors are involved in leaves.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Physiologists</pub><pmid>10859193</pmid><doi>10.1104/pp.123.2.637</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2000-06, Vol.123 (2), p.637-643
issn 0032-0889
1532-2548
language eng
recordid cdi_proquest_miscellaneous_71201990
source MEDLINE; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals
subjects Agronomy. Soil science and plant productions
Arabidopsis - metabolism
Arabidopsis Proteins
Base Sequence
Biological and medical sciences
Biosynthesis
DNA Primers
Economic plant physiology
Fatty acids
Flowers
Fundamental and applied biological sciences. Psychology
Gene Expression
Leaves
Lipid Metabolism
Lipids
Metabolism
Metabolism. Physicochemical requirements
Nitrogen metabolism and other ones (excepting carbon metabolism)
Nutrition. Photosynthesis. Respiration. Metabolism
Palmitic Acid - metabolism
Plant physiology and development
Plant Proteins - genetics
Plant Proteins - metabolism
Plant tissues
RNA, Messenger - genetics
RNA, Messenger - metabolism
Thiolester Hydrolases - genetics
Thiolester Hydrolases - metabolism
title Accumulation of palmitate in Arabidopsis mediated by the acyl-acyl carrier protein thioesterase FATB1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A44%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accumulation%20of%20palmitate%20in%20Arabidopsis%20mediated%20by%20the%20acyl-acyl%20carrier%20protein%20thioesterase%20FATB1&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=D%C3%96RMANN,%20P&rft.date=2000-06-01&rft.volume=123&rft.issue=2&rft.spage=637&rft.epage=643&rft.pages=637-643&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.123.2.637&rft_dat=%3Cproquest_cross%3E55323627%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218625090&rft_id=info:pmid/10859193&rfr_iscdi=true