Medical profiling: improving standards and risk adjustments using hierarchical models

The conclusions from a profile analysis to identify performance extremes can be affected substantially by the standards and statistical methods used and by the adequacy of risk adjustment. Medically meaningful standards are proposed to replace common statistical standards. Hierarchical regression me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of health economics 2000-05, Vol.19 (3), p.291-309
Hauptverfasser: Burgess, James F., Christiansen, Cindy L., Michalak, Sarah E., Morris, Carl N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 309
container_issue 3
container_start_page 291
container_title Journal of health economics
container_volume 19
creator Burgess, James F.
Christiansen, Cindy L.
Michalak, Sarah E.
Morris, Carl N.
description The conclusions from a profile analysis to identify performance extremes can be affected substantially by the standards and statistical methods used and by the adequacy of risk adjustment. Medically meaningful standards are proposed to replace common statistical standards. Hierarchical regression methods can handle several levels of random variation, make risk adjustments for the providers' case-mix differences, and address the proposed standards. These methods determine probabilities needed to make meaningful profiles of medical units based on standards set by all appropriate parties.
doi_str_mv 10.1016/S0167-6296(99)00034-X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71201524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016762969900034X</els_id><sourcerecordid>53975788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c583t-f10a84e348749a6528b8be1339414f058055440aec3db2e7bdff71672392416c3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EotvCTwBFHCo4BPwVx-ZSoap8VEUcoFJvlmNPWC_5WOxkpf77zm6qCnHpYWZs65nRO34JecXoe0aZ-vATU10qbtRbY95RSoUsb56QFdO1KZmS6ilZPSBH5DjnDUK0EuY5OWLU1DUzYkWuv0OI3nXFNo1t7OLw-2MRe7zs8FjkyQ3BpZALrEWK-U_hwmbOUw_DlIs576F1hOSSXx_G9GOALr8gz1rXZXh5X0_I9eeLX-dfy6sfX76df7oqfaXFVLaMOi1BSF1L41TFdaMbYEIYyWRLK02rSkrqwIvQcKib0LY17sSF4ZIpL07I6TIXBf-dIU-2j9lD17kBxjnbmnHKKi4fBYU2QmmlEXzzH7gZ5zTgEpajIMEl5whVC-TTmHOC1m5T7F26tYzavTv24I7df701xh7csTfYd7n0JdiCf2gCgM0a_DjYnRWOGUy3GBzbsEQMgbHdPxlmBTV2PfU47PW90rnpIfwjYfEWgbMFQENghybZ7CMMHg1P4CcbxviI3jv1i7d6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205832422</pqid></control><display><type>article</type><title>Medical profiling: improving standards and risk adjustments using hierarchical models</title><source>MEDLINE</source><source>RePEc</source><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><source>Access via ScienceDirect (Elsevier)</source><creator>Burgess, James F. ; Christiansen, Cindy L. ; Michalak, Sarah E. ; Morris, Carl N.</creator><creatorcontrib>Burgess, James F. ; Christiansen, Cindy L. ; Michalak, Sarah E. ; Morris, Carl N.</creatorcontrib><description>The conclusions from a profile analysis to identify performance extremes can be affected substantially by the standards and statistical methods used and by the adequacy of risk adjustment. Medically meaningful standards are proposed to replace common statistical standards. Hierarchical regression methods can handle several levels of random variation, make risk adjustments for the providers' case-mix differences, and address the proposed standards. These methods determine probabilities needed to make meaningful profiles of medical units based on standards set by all appropriate parties.</description><identifier>ISSN: 0167-6296</identifier><identifier>EISSN: 1879-1646</identifier><identifier>DOI: 10.1016/S0167-6296(99)00034-X</identifier><identifier>PMID: 10977193</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject><![CDATA[Health administration ; Health care ; Health care delivery ; Health economics ; Health management ; Health services ; Hierarchical models ; Hospitals, Veterans - statistics & numerical data ; Intensive Care Units - statistics & numerical data ; Methods ; Models, Statistical ; Patient Readmission - statistics & numerical data ; Poisson Distribution ; Profiling standards ; Quality Assurance, Health Care - organization & administration ; Quality Assurance, Health Care - statistics & numerical data ; Regression analysis ; Regression-to-the-mean ; Risk ; Risk adjustment ; Risk Adjustment - methods ; Risk Adjustment - statistics & numerical data ; Risk assessment ; Statistical analysis ; Statistical methods ; Studies]]></subject><ispartof>Journal of health economics, 2000-05, Vol.19 (3), p.291-309</ispartof><rights>1999</rights><rights>Copyright Elsevier Sequoia S.A. May 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c583t-f10a84e348749a6528b8be1339414f058055440aec3db2e7bdff71672392416c3</citedby><cites>FETCH-LOGICAL-c583t-f10a84e348749a6528b8be1339414f058055440aec3db2e7bdff71672392416c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0167-6296(99)00034-X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,4012,27933,27934,31008,46004</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10977193$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeejhecon/v_3a19_3ay_3a2000_3ai_3a3_3ap_3a291-309.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Burgess, James F.</creatorcontrib><creatorcontrib>Christiansen, Cindy L.</creatorcontrib><creatorcontrib>Michalak, Sarah E.</creatorcontrib><creatorcontrib>Morris, Carl N.</creatorcontrib><title>Medical profiling: improving standards and risk adjustments using hierarchical models</title><title>Journal of health economics</title><addtitle>J Health Econ</addtitle><description>The conclusions from a profile analysis to identify performance extremes can be affected substantially by the standards and statistical methods used and by the adequacy of risk adjustment. Medically meaningful standards are proposed to replace common statistical standards. Hierarchical regression methods can handle several levels of random variation, make risk adjustments for the providers' case-mix differences, and address the proposed standards. These methods determine probabilities needed to make meaningful profiles of medical units based on standards set by all appropriate parties.</description><subject>Health administration</subject><subject>Health care</subject><subject>Health care delivery</subject><subject>Health economics</subject><subject>Health management</subject><subject>Health services</subject><subject>Hierarchical models</subject><subject>Hospitals, Veterans - statistics &amp; numerical data</subject><subject>Intensive Care Units - statistics &amp; numerical data</subject><subject>Methods</subject><subject>Models, Statistical</subject><subject>Patient Readmission - statistics &amp; numerical data</subject><subject>Poisson Distribution</subject><subject>Profiling standards</subject><subject>Quality Assurance, Health Care - organization &amp; administration</subject><subject>Quality Assurance, Health Care - statistics &amp; numerical data</subject><subject>Regression analysis</subject><subject>Regression-to-the-mean</subject><subject>Risk</subject><subject>Risk adjustment</subject><subject>Risk Adjustment - methods</subject><subject>Risk Adjustment - statistics &amp; numerical data</subject><subject>Risk assessment</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Studies</subject><issn>0167-6296</issn><issn>1879-1646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>X2L</sourceid><sourceid>7QJ</sourceid><recordid>eNqFkU1v1DAQhi0EotvCTwBFHCo4BPwVx-ZSoap8VEUcoFJvlmNPWC_5WOxkpf77zm6qCnHpYWZs65nRO34JecXoe0aZ-vATU10qbtRbY95RSoUsb56QFdO1KZmS6ilZPSBH5DjnDUK0EuY5OWLU1DUzYkWuv0OI3nXFNo1t7OLw-2MRe7zs8FjkyQ3BpZALrEWK-U_hwmbOUw_DlIs576F1hOSSXx_G9GOALr8gz1rXZXh5X0_I9eeLX-dfy6sfX76df7oqfaXFVLaMOi1BSF1L41TFdaMbYEIYyWRLK02rSkrqwIvQcKib0LY17sSF4ZIpL07I6TIXBf-dIU-2j9lD17kBxjnbmnHKKi4fBYU2QmmlEXzzH7gZ5zTgEpajIMEl5whVC-TTmHOC1m5T7F26tYzavTv24I7df701xh7csTfYd7n0JdiCf2gCgM0a_DjYnRWOGUy3GBzbsEQMgbHdPxlmBTV2PfU47PW90rnpIfwjYfEWgbMFQENghybZ7CMMHg1P4CcbxviI3jv1i7d6</recordid><startdate>20000501</startdate><enddate>20000501</enddate><creator>Burgess, James F.</creator><creator>Christiansen, Cindy L.</creator><creator>Michalak, Sarah E.</creator><creator>Morris, Carl N.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7T2</scope><scope>8BJ</scope><scope>C1K</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20000501</creationdate><title>Medical profiling: improving standards and risk adjustments using hierarchical models</title><author>Burgess, James F. ; Christiansen, Cindy L. ; Michalak, Sarah E. ; Morris, Carl N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c583t-f10a84e348749a6528b8be1339414f058055440aec3db2e7bdff71672392416c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Health administration</topic><topic>Health care</topic><topic>Health care delivery</topic><topic>Health economics</topic><topic>Health management</topic><topic>Health services</topic><topic>Hierarchical models</topic><topic>Hospitals, Veterans - statistics &amp; numerical data</topic><topic>Intensive Care Units - statistics &amp; numerical data</topic><topic>Methods</topic><topic>Models, Statistical</topic><topic>Patient Readmission - statistics &amp; numerical data</topic><topic>Poisson Distribution</topic><topic>Profiling standards</topic><topic>Quality Assurance, Health Care - organization &amp; administration</topic><topic>Quality Assurance, Health Care - statistics &amp; numerical data</topic><topic>Regression analysis</topic><topic>Regression-to-the-mean</topic><topic>Risk</topic><topic>Risk adjustment</topic><topic>Risk Adjustment - methods</topic><topic>Risk Adjustment - statistics &amp; numerical data</topic><topic>Risk assessment</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burgess, James F.</creatorcontrib><creatorcontrib>Christiansen, Cindy L.</creatorcontrib><creatorcontrib>Michalak, Sarah E.</creatorcontrib><creatorcontrib>Morris, Carl N.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of health economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burgess, James F.</au><au>Christiansen, Cindy L.</au><au>Michalak, Sarah E.</au><au>Morris, Carl N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Medical profiling: improving standards and risk adjustments using hierarchical models</atitle><jtitle>Journal of health economics</jtitle><addtitle>J Health Econ</addtitle><date>2000-05-01</date><risdate>2000</risdate><volume>19</volume><issue>3</issue><spage>291</spage><epage>309</epage><pages>291-309</pages><issn>0167-6296</issn><eissn>1879-1646</eissn><abstract>The conclusions from a profile analysis to identify performance extremes can be affected substantially by the standards and statistical methods used and by the adequacy of risk adjustment. Medically meaningful standards are proposed to replace common statistical standards. Hierarchical regression methods can handle several levels of random variation, make risk adjustments for the providers' case-mix differences, and address the proposed standards. These methods determine probabilities needed to make meaningful profiles of medical units based on standards set by all appropriate parties.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>10977193</pmid><doi>10.1016/S0167-6296(99)00034-X</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-6296
ispartof Journal of health economics, 2000-05, Vol.19 (3), p.291-309
issn 0167-6296
1879-1646
language eng
recordid cdi_proquest_miscellaneous_71201524
source MEDLINE; RePEc; Applied Social Sciences Index & Abstracts (ASSIA); Access via ScienceDirect (Elsevier)
subjects Health administration
Health care
Health care delivery
Health economics
Health management
Health services
Hierarchical models
Hospitals, Veterans - statistics & numerical data
Intensive Care Units - statistics & numerical data
Methods
Models, Statistical
Patient Readmission - statistics & numerical data
Poisson Distribution
Profiling standards
Quality Assurance, Health Care - organization & administration
Quality Assurance, Health Care - statistics & numerical data
Regression analysis
Regression-to-the-mean
Risk
Risk adjustment
Risk Adjustment - methods
Risk Adjustment - statistics & numerical data
Risk assessment
Statistical analysis
Statistical methods
Studies
title Medical profiling: improving standards and risk adjustments using hierarchical models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T13%3A05%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Medical%20profiling:%20improving%20standards%20and%20risk%20adjustments%20using%20hierarchical%20models&rft.jtitle=Journal%20of%20health%20economics&rft.au=Burgess,%20James%20F.&rft.date=2000-05-01&rft.volume=19&rft.issue=3&rft.spage=291&rft.epage=309&rft.pages=291-309&rft.issn=0167-6296&rft.eissn=1879-1646&rft_id=info:doi/10.1016/S0167-6296(99)00034-X&rft_dat=%3Cproquest_cross%3E53975788%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205832422&rft_id=info:pmid/10977193&rft_els_id=S016762969900034X&rfr_iscdi=true