Medical profiling: improving standards and risk adjustments using hierarchical models
The conclusions from a profile analysis to identify performance extremes can be affected substantially by the standards and statistical methods used and by the adequacy of risk adjustment. Medically meaningful standards are proposed to replace common statistical standards. Hierarchical regression me...
Gespeichert in:
Veröffentlicht in: | Journal of health economics 2000-05, Vol.19 (3), p.291-309 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 309 |
---|---|
container_issue | 3 |
container_start_page | 291 |
container_title | Journal of health economics |
container_volume | 19 |
creator | Burgess, James F. Christiansen, Cindy L. Michalak, Sarah E. Morris, Carl N. |
description | The conclusions from a profile analysis to identify performance extremes can be affected substantially by the standards and statistical methods used and by the adequacy of risk adjustment. Medically meaningful standards are proposed to replace common statistical standards. Hierarchical regression methods can handle several levels of random variation, make risk adjustments for the providers' case-mix differences, and address the proposed standards. These methods determine probabilities needed to make meaningful profiles of medical units based on standards set by all appropriate parties. |
doi_str_mv | 10.1016/S0167-6296(99)00034-X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71201524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016762969900034X</els_id><sourcerecordid>53975788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c583t-f10a84e348749a6528b8be1339414f058055440aec3db2e7bdff71672392416c3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EotvCTwBFHCo4BPwVx-ZSoap8VEUcoFJvlmNPWC_5WOxkpf77zm6qCnHpYWZs65nRO34JecXoe0aZ-vATU10qbtRbY95RSoUsb56QFdO1KZmS6ilZPSBH5DjnDUK0EuY5OWLU1DUzYkWuv0OI3nXFNo1t7OLw-2MRe7zs8FjkyQ3BpZALrEWK-U_hwmbOUw_DlIs576F1hOSSXx_G9GOALr8gz1rXZXh5X0_I9eeLX-dfy6sfX76df7oqfaXFVLaMOi1BSF1L41TFdaMbYEIYyWRLK02rSkrqwIvQcKib0LY17sSF4ZIpL07I6TIXBf-dIU-2j9lD17kBxjnbmnHKKi4fBYU2QmmlEXzzH7gZ5zTgEpajIMEl5whVC-TTmHOC1m5T7F26tYzavTv24I7df701xh7csTfYd7n0JdiCf2gCgM0a_DjYnRWOGUy3GBzbsEQMgbHdPxlmBTV2PfU47PW90rnpIfwjYfEWgbMFQENghybZ7CMMHg1P4CcbxviI3jv1i7d6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205832422</pqid></control><display><type>article</type><title>Medical profiling: improving standards and risk adjustments using hierarchical models</title><source>MEDLINE</source><source>RePEc</source><source>Applied Social Sciences Index & Abstracts (ASSIA)</source><source>Access via ScienceDirect (Elsevier)</source><creator>Burgess, James F. ; Christiansen, Cindy L. ; Michalak, Sarah E. ; Morris, Carl N.</creator><creatorcontrib>Burgess, James F. ; Christiansen, Cindy L. ; Michalak, Sarah E. ; Morris, Carl N.</creatorcontrib><description>The conclusions from a profile analysis to identify performance extremes can be affected substantially by the standards and statistical methods used and by the adequacy of risk adjustment. Medically meaningful standards are proposed to replace common statistical standards. Hierarchical regression methods can handle several levels of random variation, make risk adjustments for the providers' case-mix differences, and address the proposed standards. These methods determine probabilities needed to make meaningful profiles of medical units based on standards set by all appropriate parties.</description><identifier>ISSN: 0167-6296</identifier><identifier>EISSN: 1879-1646</identifier><identifier>DOI: 10.1016/S0167-6296(99)00034-X</identifier><identifier>PMID: 10977193</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject><![CDATA[Health administration ; Health care ; Health care delivery ; Health economics ; Health management ; Health services ; Hierarchical models ; Hospitals, Veterans - statistics & numerical data ; Intensive Care Units - statistics & numerical data ; Methods ; Models, Statistical ; Patient Readmission - statistics & numerical data ; Poisson Distribution ; Profiling standards ; Quality Assurance, Health Care - organization & administration ; Quality Assurance, Health Care - statistics & numerical data ; Regression analysis ; Regression-to-the-mean ; Risk ; Risk adjustment ; Risk Adjustment - methods ; Risk Adjustment - statistics & numerical data ; Risk assessment ; Statistical analysis ; Statistical methods ; Studies]]></subject><ispartof>Journal of health economics, 2000-05, Vol.19 (3), p.291-309</ispartof><rights>1999</rights><rights>Copyright Elsevier Sequoia S.A. May 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c583t-f10a84e348749a6528b8be1339414f058055440aec3db2e7bdff71672392416c3</citedby><cites>FETCH-LOGICAL-c583t-f10a84e348749a6528b8be1339414f058055440aec3db2e7bdff71672392416c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0167-6296(99)00034-X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,4012,27933,27934,31008,46004</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10977193$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeejhecon/v_3a19_3ay_3a2000_3ai_3a3_3ap_3a291-309.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Burgess, James F.</creatorcontrib><creatorcontrib>Christiansen, Cindy L.</creatorcontrib><creatorcontrib>Michalak, Sarah E.</creatorcontrib><creatorcontrib>Morris, Carl N.</creatorcontrib><title>Medical profiling: improving standards and risk adjustments using hierarchical models</title><title>Journal of health economics</title><addtitle>J Health Econ</addtitle><description>The conclusions from a profile analysis to identify performance extremes can be affected substantially by the standards and statistical methods used and by the adequacy of risk adjustment. Medically meaningful standards are proposed to replace common statistical standards. Hierarchical regression methods can handle several levels of random variation, make risk adjustments for the providers' case-mix differences, and address the proposed standards. These methods determine probabilities needed to make meaningful profiles of medical units based on standards set by all appropriate parties.</description><subject>Health administration</subject><subject>Health care</subject><subject>Health care delivery</subject><subject>Health economics</subject><subject>Health management</subject><subject>Health services</subject><subject>Hierarchical models</subject><subject>Hospitals, Veterans - statistics & numerical data</subject><subject>Intensive Care Units - statistics & numerical data</subject><subject>Methods</subject><subject>Models, Statistical</subject><subject>Patient Readmission - statistics & numerical data</subject><subject>Poisson Distribution</subject><subject>Profiling standards</subject><subject>Quality Assurance, Health Care - organization & administration</subject><subject>Quality Assurance, Health Care - statistics & numerical data</subject><subject>Regression analysis</subject><subject>Regression-to-the-mean</subject><subject>Risk</subject><subject>Risk adjustment</subject><subject>Risk Adjustment - methods</subject><subject>Risk Adjustment - statistics & numerical data</subject><subject>Risk assessment</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Studies</subject><issn>0167-6296</issn><issn>1879-1646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>X2L</sourceid><sourceid>7QJ</sourceid><recordid>eNqFkU1v1DAQhi0EotvCTwBFHCo4BPwVx-ZSoap8VEUcoFJvlmNPWC_5WOxkpf77zm6qCnHpYWZs65nRO34JecXoe0aZ-vATU10qbtRbY95RSoUsb56QFdO1KZmS6ilZPSBH5DjnDUK0EuY5OWLU1DUzYkWuv0OI3nXFNo1t7OLw-2MRe7zs8FjkyQ3BpZALrEWK-U_hwmbOUw_DlIs576F1hOSSXx_G9GOALr8gz1rXZXh5X0_I9eeLX-dfy6sfX76df7oqfaXFVLaMOi1BSF1L41TFdaMbYEIYyWRLK02rSkrqwIvQcKib0LY17sSF4ZIpL07I6TIXBf-dIU-2j9lD17kBxjnbmnHKKi4fBYU2QmmlEXzzH7gZ5zTgEpajIMEl5whVC-TTmHOC1m5T7F26tYzavTv24I7df701xh7csTfYd7n0JdiCf2gCgM0a_DjYnRWOGUy3GBzbsEQMgbHdPxlmBTV2PfU47PW90rnpIfwjYfEWgbMFQENghybZ7CMMHg1P4CcbxviI3jv1i7d6</recordid><startdate>20000501</startdate><enddate>20000501</enddate><creator>Burgess, James F.</creator><creator>Christiansen, Cindy L.</creator><creator>Michalak, Sarah E.</creator><creator>Morris, Carl N.</creator><general>Elsevier B.V</general><general>Elsevier</general><general>Elsevier Sequoia S.A</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope><scope>7T2</scope><scope>8BJ</scope><scope>C1K</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20000501</creationdate><title>Medical profiling: improving standards and risk adjustments using hierarchical models</title><author>Burgess, James F. ; Christiansen, Cindy L. ; Michalak, Sarah E. ; Morris, Carl N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c583t-f10a84e348749a6528b8be1339414f058055440aec3db2e7bdff71672392416c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Health administration</topic><topic>Health care</topic><topic>Health care delivery</topic><topic>Health economics</topic><topic>Health management</topic><topic>Health services</topic><topic>Hierarchical models</topic><topic>Hospitals, Veterans - statistics & numerical data</topic><topic>Intensive Care Units - statistics & numerical data</topic><topic>Methods</topic><topic>Models, Statistical</topic><topic>Patient Readmission - statistics & numerical data</topic><topic>Poisson Distribution</topic><topic>Profiling standards</topic><topic>Quality Assurance, Health Care - organization & administration</topic><topic>Quality Assurance, Health Care - statistics & numerical data</topic><topic>Regression analysis</topic><topic>Regression-to-the-mean</topic><topic>Risk</topic><topic>Risk adjustment</topic><topic>Risk Adjustment - methods</topic><topic>Risk Adjustment - statistics & numerical data</topic><topic>Risk assessment</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burgess, James F.</creatorcontrib><creatorcontrib>Christiansen, Cindy L.</creatorcontrib><creatorcontrib>Michalak, Sarah E.</creatorcontrib><creatorcontrib>Morris, Carl N.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index & Abstracts (ASSIA)</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of health economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burgess, James F.</au><au>Christiansen, Cindy L.</au><au>Michalak, Sarah E.</au><au>Morris, Carl N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Medical profiling: improving standards and risk adjustments using hierarchical models</atitle><jtitle>Journal of health economics</jtitle><addtitle>J Health Econ</addtitle><date>2000-05-01</date><risdate>2000</risdate><volume>19</volume><issue>3</issue><spage>291</spage><epage>309</epage><pages>291-309</pages><issn>0167-6296</issn><eissn>1879-1646</eissn><abstract>The conclusions from a profile analysis to identify performance extremes can be affected substantially by the standards and statistical methods used and by the adequacy of risk adjustment. Medically meaningful standards are proposed to replace common statistical standards. Hierarchical regression methods can handle several levels of random variation, make risk adjustments for the providers' case-mix differences, and address the proposed standards. These methods determine probabilities needed to make meaningful profiles of medical units based on standards set by all appropriate parties.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>10977193</pmid><doi>10.1016/S0167-6296(99)00034-X</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-6296 |
ispartof | Journal of health economics, 2000-05, Vol.19 (3), p.291-309 |
issn | 0167-6296 1879-1646 |
language | eng |
recordid | cdi_proquest_miscellaneous_71201524 |
source | MEDLINE; RePEc; Applied Social Sciences Index & Abstracts (ASSIA); Access via ScienceDirect (Elsevier) |
subjects | Health administration Health care Health care delivery Health economics Health management Health services Hierarchical models Hospitals, Veterans - statistics & numerical data Intensive Care Units - statistics & numerical data Methods Models, Statistical Patient Readmission - statistics & numerical data Poisson Distribution Profiling standards Quality Assurance, Health Care - organization & administration Quality Assurance, Health Care - statistics & numerical data Regression analysis Regression-to-the-mean Risk Risk adjustment Risk Adjustment - methods Risk Adjustment - statistics & numerical data Risk assessment Statistical analysis Statistical methods Studies |
title | Medical profiling: improving standards and risk adjustments using hierarchical models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T13%3A05%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Medical%20profiling:%20improving%20standards%20and%20risk%20adjustments%20using%20hierarchical%20models&rft.jtitle=Journal%20of%20health%20economics&rft.au=Burgess,%20James%20F.&rft.date=2000-05-01&rft.volume=19&rft.issue=3&rft.spage=291&rft.epage=309&rft.pages=291-309&rft.issn=0167-6296&rft.eissn=1879-1646&rft_id=info:doi/10.1016/S0167-6296(99)00034-X&rft_dat=%3Cproquest_cross%3E53975788%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205832422&rft_id=info:pmid/10977193&rft_els_id=S016762969900034X&rfr_iscdi=true |