Optimized Gating Scheme for Rapid Lifetime Determinations of Single-Exponential Luminescence Lifetimes
The rapid lifetime method (RLD) for determining excited-state lifetimes uses the ratio of the areas under two regions of the decay. To get good precision with the standard method, prior knowledge of the lifetime is essential to selecting the integration regions. As will be shown, the usual method of...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2001-09, Vol.73 (18), p.4486-4490 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The rapid lifetime method (RLD) for determining excited-state lifetimes uses the ratio of the areas under two regions of the decay. To get good precision with the standard method, prior knowledge of the lifetime is essential to selecting the integration regions. As will be shown, the usual method of selecting integration regions is far from optimal. An optimal gating scheme that is more precise and much more forgiving in the selection of integration region than any of the prior methods will be shown. Monte Carlo simulations were performed to determine the optimal gating. Experimental data was used to confirm the capabilities of the optimized RLD. The speed of the optimal RLD is similar to the standard RLD but without the necessity of matching the integration interval to the lifetime for precise results. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/ac0102361 |