CD4+ T Cells Acting Independently of Antibody Contribute to Protective Immunity to Plasmodium chabaudi Infection After Apical Membrane Antigen 1 Immunization

Apical membrane Ag 1 (AMA1) is a leading malaria vaccine candidate. Homologues of AMA1 can induce protection in mice and monkeys, but the mechanism of immunity is not understood. Mice immunized with a refolded, recombinant, Plasmodium chabaudi AMA1 fragment (AMA1B) can withstand subsequent challenge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 2000-07, Vol.165 (1), p.389-396
Hauptverfasser: Xu, Huji, Hodder, Anthony N, Yan, Huara, Crewther, Pauline E, Anders, Robin F, Good, Michael F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Apical membrane Ag 1 (AMA1) is a leading malaria vaccine candidate. Homologues of AMA1 can induce protection in mice and monkeys, but the mechanism of immunity is not understood. Mice immunized with a refolded, recombinant, Plasmodium chabaudi AMA1 fragment (AMA1B) can withstand subsequent challenge with P. chabaudi adami. Here we show that CD4+ T cell depletion, but not gammadelta T cell depletion, can cause a significant drop in antiparasite immunity in either immunized normal or immunized B cell KO mice. In normal mice, this loss of immunity is not accompanied by a decline in Ab levels. These observations indicate a role for AMA1-specific Ab-independent T cell-mediated immunity. However, the loss of immunity in normal CD4+ T cell-depleted mice is temporary. Furthermore, immunized B cell KO mice cannot survive infection, demonstrating the absolute importance of B cells, and presumably Ab, in AMA1-induced immunity. CD4+ T cells specific for a cryptic conserved epitope on AMA1 can adoptively transfer protection to athymic (nu/nu) mice, the level of which is enhanced by cotransfer of rabbit anti-AMA1-specific antisera. Recipients of rabbit antisera alone do not survive. Some protected recipients of T cells plus antisera do not develop their own AMA 1-specific Ab response, suggesting that AMA 1-specific CMI alone can protect mice. These data are the first to demonstrate the specificity of any protective CMI response in malaria and have important implications for developing a malaria vaccine.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.165.1.389