Peroxidases Inhibit Nitric Oxide (NO) Dependent Bronchodilation:  Development of a Model Describing NO−Peroxidase Interactions

Recent studies demonstrate that nitric oxide (NO) serves as a physiological substrate for mammalian peroxidases [(2000) J. Biol. Chem. 275, 37524]. We now show that eosinophil peroxidase (EPO) and lactoperoxidase (LPO), peroxidases known to be enriched in airways of asthmatic subjects, function as a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2001-10, Vol.40 (39), p.11866-11875
Hauptverfasser: Abu-Soud, Husam M, Khassawneh, Mohamed Y, Sohn, Ju-Tae, Murray, Paul, Haxhiu, Musia A, Hazen, Stanley L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11875
container_issue 39
container_start_page 11866
container_title Biochemistry (Easton)
container_volume 40
creator Abu-Soud, Husam M
Khassawneh, Mohamed Y
Sohn, Ju-Tae
Murray, Paul
Haxhiu, Musia A
Hazen, Stanley L
description Recent studies demonstrate that nitric oxide (NO) serves as a physiological substrate for mammalian peroxidases [(2000) J. Biol. Chem. 275, 37524]. We now show that eosinophil peroxidase (EPO) and lactoperoxidase (LPO), peroxidases known to be enriched in airways of asthmatic subjects, function as a catalytic sink for NO, modulating its bioavailability and function. Using NO-selective electrodes and direct spectroscopic and rapid kinetic methods, we examined the interactions of NO with EPO and LPO compounds I and II and ferric forms and compared the results to those reported for myeloperoxidase. A unified kinetic model for NO interactions with intermediates of mammalian peroxidases during steady-state catalysis is presented that accommodates unique features observed with each member of the mammalian peroxidase superfamily. Potential functional consequences of peroxidase−NO interactions in asthma are investigated by utilizing organ chamber studies with tracheal rings. In the presence of pathophysiologically relevant levels of peroxidases and H2O2, NO-dependent bronchodilation of preconstricted tracheal rings was reversibly inhibited. Thus, NO interaction with mammalian peroxidases may serve as a potential mechanism for modulating their catalytic activities, influencing the regulation of local inflammatory and infectious events in vivo.
doi_str_mv 10.1021/bi011206v
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71196279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71196279</sourcerecordid><originalsourceid>FETCH-LOGICAL-a349t-eb694bd26935de6ded475c88c0992459c7308fb29a7e978d0bff4c24cd04eddd3</originalsourceid><addsrcrecordid>eNptkDFvFDEUhC1ERI5AwR9AbkCkWHj2etdrOggQEsJdEKG2vPZb4rC3Puy9KHRRqqTlJ-aX4NOdkobq6c18mpGGkGcMXjPg7E3rgTEO9fkDMmEVh0IoVT0kEwCoC65q2CaPUzrLrwApHpFtxioJTSMn5OoYY7jwziRM9GA49a0f6dSP0Vs6yzrSV9PZLv2ACxwcDiN9H8NgT4PzvRl9GN7eXt5k9xz7sJiv_NBRQ78Gh32Wk405cPhJp7Pb67_3VblpxGjsKiE9IVud6RM-3dwd8uPTx5O9z8XRbP9g791RYUqhxgLbWonW8VqVlcPaoROysk1jQSkuKmVlCU3XcmUkKtk4aLtOWC6sA4HOuXKHvFznLmL4vcQ06rlPFvveDBiWSUvGVM2lyuDuGrQxpBSx04vo5yb-0Qz0anB9N3hmn29Cl-0c3T25WTgDxRrwacSLO9_EX7qWpaz0yfF3_QUOp9-qQ6Eh8y_WvLFJn4VlHPIm_yn-Byd9mbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71196279</pqid></control><display><type>article</type><title>Peroxidases Inhibit Nitric Oxide (NO) Dependent Bronchodilation:  Development of a Model Describing NO−Peroxidase Interactions</title><source>MEDLINE</source><source>ACS Publications</source><creator>Abu-Soud, Husam M ; Khassawneh, Mohamed Y ; Sohn, Ju-Tae ; Murray, Paul ; Haxhiu, Musia A ; Hazen, Stanley L</creator><creatorcontrib>Abu-Soud, Husam M ; Khassawneh, Mohamed Y ; Sohn, Ju-Tae ; Murray, Paul ; Haxhiu, Musia A ; Hazen, Stanley L</creatorcontrib><description>Recent studies demonstrate that nitric oxide (NO) serves as a physiological substrate for mammalian peroxidases [(2000) J. Biol. Chem. 275, 37524]. We now show that eosinophil peroxidase (EPO) and lactoperoxidase (LPO), peroxidases known to be enriched in airways of asthmatic subjects, function as a catalytic sink for NO, modulating its bioavailability and function. Using NO-selective electrodes and direct spectroscopic and rapid kinetic methods, we examined the interactions of NO with EPO and LPO compounds I and II and ferric forms and compared the results to those reported for myeloperoxidase. A unified kinetic model for NO interactions with intermediates of mammalian peroxidases during steady-state catalysis is presented that accommodates unique features observed with each member of the mammalian peroxidase superfamily. Potential functional consequences of peroxidase−NO interactions in asthma are investigated by utilizing organ chamber studies with tracheal rings. In the presence of pathophysiologically relevant levels of peroxidases and H2O2, NO-dependent bronchodilation of preconstricted tracheal rings was reversibly inhibited. Thus, NO interaction with mammalian peroxidases may serve as a potential mechanism for modulating their catalytic activities, influencing the regulation of local inflammatory and infectious events in vivo.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi011206v</identifier><identifier>PMID: 11570887</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Asthma - enzymology ; Asthma - physiopathology ; Bronchi - enzymology ; Bronchi - metabolism ; Bronchi - physiology ; Catalysis ; Humans ; In Vitro Techniques ; Kinetics ; Muscle Relaxation - physiology ; Nitric Oxide - antagonists &amp; inhibitors ; Nitric Oxide - metabolism ; Nitric Oxide - physiology ; Peroxidases - metabolism ; Swine ; Trachea - enzymology ; Trachea - physiology</subject><ispartof>Biochemistry (Easton), 2001-10, Vol.40 (39), p.11866-11875</ispartof><rights>Copyright © 2001 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a349t-eb694bd26935de6ded475c88c0992459c7308fb29a7e978d0bff4c24cd04eddd3</citedby><cites>FETCH-LOGICAL-a349t-eb694bd26935de6ded475c88c0992459c7308fb29a7e978d0bff4c24cd04eddd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bi011206v$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bi011206v$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11570887$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Abu-Soud, Husam M</creatorcontrib><creatorcontrib>Khassawneh, Mohamed Y</creatorcontrib><creatorcontrib>Sohn, Ju-Tae</creatorcontrib><creatorcontrib>Murray, Paul</creatorcontrib><creatorcontrib>Haxhiu, Musia A</creatorcontrib><creatorcontrib>Hazen, Stanley L</creatorcontrib><title>Peroxidases Inhibit Nitric Oxide (NO) Dependent Bronchodilation:  Development of a Model Describing NO−Peroxidase Interactions</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>Recent studies demonstrate that nitric oxide (NO) serves as a physiological substrate for mammalian peroxidases [(2000) J. Biol. Chem. 275, 37524]. We now show that eosinophil peroxidase (EPO) and lactoperoxidase (LPO), peroxidases known to be enriched in airways of asthmatic subjects, function as a catalytic sink for NO, modulating its bioavailability and function. Using NO-selective electrodes and direct spectroscopic and rapid kinetic methods, we examined the interactions of NO with EPO and LPO compounds I and II and ferric forms and compared the results to those reported for myeloperoxidase. A unified kinetic model for NO interactions with intermediates of mammalian peroxidases during steady-state catalysis is presented that accommodates unique features observed with each member of the mammalian peroxidase superfamily. Potential functional consequences of peroxidase−NO interactions in asthma are investigated by utilizing organ chamber studies with tracheal rings. In the presence of pathophysiologically relevant levels of peroxidases and H2O2, NO-dependent bronchodilation of preconstricted tracheal rings was reversibly inhibited. Thus, NO interaction with mammalian peroxidases may serve as a potential mechanism for modulating their catalytic activities, influencing the regulation of local inflammatory and infectious events in vivo.</description><subject>Animals</subject><subject>Asthma - enzymology</subject><subject>Asthma - physiopathology</subject><subject>Bronchi - enzymology</subject><subject>Bronchi - metabolism</subject><subject>Bronchi - physiology</subject><subject>Catalysis</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Kinetics</subject><subject>Muscle Relaxation - physiology</subject><subject>Nitric Oxide - antagonists &amp; inhibitors</subject><subject>Nitric Oxide - metabolism</subject><subject>Nitric Oxide - physiology</subject><subject>Peroxidases - metabolism</subject><subject>Swine</subject><subject>Trachea - enzymology</subject><subject>Trachea - physiology</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkDFvFDEUhC1ERI5AwR9AbkCkWHj2etdrOggQEsJdEKG2vPZb4rC3Puy9KHRRqqTlJ-aX4NOdkobq6c18mpGGkGcMXjPg7E3rgTEO9fkDMmEVh0IoVT0kEwCoC65q2CaPUzrLrwApHpFtxioJTSMn5OoYY7jwziRM9GA49a0f6dSP0Vs6yzrSV9PZLv2ACxwcDiN9H8NgT4PzvRl9GN7eXt5k9xz7sJiv_NBRQ78Gh32Wk405cPhJp7Pb67_3VblpxGjsKiE9IVud6RM-3dwd8uPTx5O9z8XRbP9g791RYUqhxgLbWonW8VqVlcPaoROysk1jQSkuKmVlCU3XcmUkKtk4aLtOWC6sA4HOuXKHvFznLmL4vcQ06rlPFvveDBiWSUvGVM2lyuDuGrQxpBSx04vo5yb-0Qz0anB9N3hmn29Cl-0c3T25WTgDxRrwacSLO9_EX7qWpaz0yfF3_QUOp9-qQ6Eh8y_WvLFJn4VlHPIm_yn-Byd9mbQ</recordid><startdate>20011002</startdate><enddate>20011002</enddate><creator>Abu-Soud, Husam M</creator><creator>Khassawneh, Mohamed Y</creator><creator>Sohn, Ju-Tae</creator><creator>Murray, Paul</creator><creator>Haxhiu, Musia A</creator><creator>Hazen, Stanley L</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20011002</creationdate><title>Peroxidases Inhibit Nitric Oxide (NO) Dependent Bronchodilation:  Development of a Model Describing NO−Peroxidase Interactions</title><author>Abu-Soud, Husam M ; Khassawneh, Mohamed Y ; Sohn, Ju-Tae ; Murray, Paul ; Haxhiu, Musia A ; Hazen, Stanley L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a349t-eb694bd26935de6ded475c88c0992459c7308fb29a7e978d0bff4c24cd04eddd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Animals</topic><topic>Asthma - enzymology</topic><topic>Asthma - physiopathology</topic><topic>Bronchi - enzymology</topic><topic>Bronchi - metabolism</topic><topic>Bronchi - physiology</topic><topic>Catalysis</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Kinetics</topic><topic>Muscle Relaxation - physiology</topic><topic>Nitric Oxide - antagonists &amp; inhibitors</topic><topic>Nitric Oxide - metabolism</topic><topic>Nitric Oxide - physiology</topic><topic>Peroxidases - metabolism</topic><topic>Swine</topic><topic>Trachea - enzymology</topic><topic>Trachea - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abu-Soud, Husam M</creatorcontrib><creatorcontrib>Khassawneh, Mohamed Y</creatorcontrib><creatorcontrib>Sohn, Ju-Tae</creatorcontrib><creatorcontrib>Murray, Paul</creatorcontrib><creatorcontrib>Haxhiu, Musia A</creatorcontrib><creatorcontrib>Hazen, Stanley L</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abu-Soud, Husam M</au><au>Khassawneh, Mohamed Y</au><au>Sohn, Ju-Tae</au><au>Murray, Paul</au><au>Haxhiu, Musia A</au><au>Hazen, Stanley L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Peroxidases Inhibit Nitric Oxide (NO) Dependent Bronchodilation:  Development of a Model Describing NO−Peroxidase Interactions</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2001-10-02</date><risdate>2001</risdate><volume>40</volume><issue>39</issue><spage>11866</spage><epage>11875</epage><pages>11866-11875</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>Recent studies demonstrate that nitric oxide (NO) serves as a physiological substrate for mammalian peroxidases [(2000) J. Biol. Chem. 275, 37524]. We now show that eosinophil peroxidase (EPO) and lactoperoxidase (LPO), peroxidases known to be enriched in airways of asthmatic subjects, function as a catalytic sink for NO, modulating its bioavailability and function. Using NO-selective electrodes and direct spectroscopic and rapid kinetic methods, we examined the interactions of NO with EPO and LPO compounds I and II and ferric forms and compared the results to those reported for myeloperoxidase. A unified kinetic model for NO interactions with intermediates of mammalian peroxidases during steady-state catalysis is presented that accommodates unique features observed with each member of the mammalian peroxidase superfamily. Potential functional consequences of peroxidase−NO interactions in asthma are investigated by utilizing organ chamber studies with tracheal rings. In the presence of pathophysiologically relevant levels of peroxidases and H2O2, NO-dependent bronchodilation of preconstricted tracheal rings was reversibly inhibited. Thus, NO interaction with mammalian peroxidases may serve as a potential mechanism for modulating their catalytic activities, influencing the regulation of local inflammatory and infectious events in vivo.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>11570887</pmid><doi>10.1021/bi011206v</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 2001-10, Vol.40 (39), p.11866-11875
issn 0006-2960
1520-4995
language eng
recordid cdi_proquest_miscellaneous_71196279
source MEDLINE; ACS Publications
subjects Animals
Asthma - enzymology
Asthma - physiopathology
Bronchi - enzymology
Bronchi - metabolism
Bronchi - physiology
Catalysis
Humans
In Vitro Techniques
Kinetics
Muscle Relaxation - physiology
Nitric Oxide - antagonists & inhibitors
Nitric Oxide - metabolism
Nitric Oxide - physiology
Peroxidases - metabolism
Swine
Trachea - enzymology
Trachea - physiology
title Peroxidases Inhibit Nitric Oxide (NO) Dependent Bronchodilation:  Development of a Model Describing NO−Peroxidase Interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A49%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Peroxidases%20Inhibit%20Nitric%20Oxide%20(NO)%20Dependent%20Bronchodilation:%E2%80%89%20Development%20of%20a%20Model%20Describing%20NO%E2%88%92Peroxidase%20Interactions&rft.jtitle=Biochemistry%20(Easton)&rft.au=Abu-Soud,%20Husam%20M&rft.date=2001-10-02&rft.volume=40&rft.issue=39&rft.spage=11866&rft.epage=11875&rft.pages=11866-11875&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi011206v&rft_dat=%3Cproquest_cross%3E71196279%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71196279&rft_id=info:pmid/11570887&rfr_iscdi=true