Hebb and homeostasis in neuronal plasticity
The positive-feedback nature of Hebbian plasticity can destabilize the properties of neuronal networks. Recent work has demonstrated that this destabilizing influence is counteracted by a number of homeostatic plasticity mechanisms that stabilize neuronal activity. Such mechanisms include global cha...
Gespeichert in:
Veröffentlicht in: | Current Opinion in Neurobiology 2000-06, Vol.10 (3), p.358-364 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 364 |
---|---|
container_issue | 3 |
container_start_page | 358 |
container_title | Current Opinion in Neurobiology |
container_volume | 10 |
creator | Turrigiano, Gina G Nelson, Sacha B |
description | The positive-feedback nature of Hebbian plasticity can destabilize the properties of neuronal networks. Recent work has demonstrated that this destabilizing influence is counteracted by a number of homeostatic plasticity mechanisms that stabilize neuronal activity. Such mechanisms include global changes in synaptic strengths, changes in neuronal excitability, and the regulation of synapse number. These recent studies suggest that Hebbian and homeostatic plasticity often target the same molecular substrates, and have opposing effects on synaptic or neuronal properties. These advances significantly broaden our framework for understanding the effects of activity on synaptic function and neuronal excitability. |
doi_str_mv | 10.1016/S0959-4388(00)00091-X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71191730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S095943880000091X</els_id><sourcerecordid>17552004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-71dd91b06dc438468d151d6df33c04e57f5907df5c92e8c82e7b292c515ef4a73</originalsourceid><addsrcrecordid>eNqFkEFLw0AQRhdRbK3-BCUnUSQ6k2SzuyeRolYoeFChtyXZneBKmtRsIvTfmzZFvPU0l_fNg8fYOcItAqZ3b6C4CpNYyiuAawBQGC4O2BiliMNUyuiQjf-QETvx_quH0ljGx2yEIDmiwDG7mVGeB1llg896SbVvM-984Kqgoq6pq6wMVmXmW2dcuz5lR0VWejrb3Qn7eHp8n87C-evzy_RhHppEpW0o0FqFOaTW9O4klRY52tQWcWwgIS4KrkDYghsVkTQyIpFHKjIcORVJJuIJuxz-rpr6uyPf6qXzhsoyq6juvBaICkUMe0EUnEcASQ_yATRN7X1DhV41bpk1a42gNzn1NqfetNIAeptTL_rdxU7Q5Uuy_1ZDvx64HwDqe_w4arQ3jipD1jVkWm1rt0fxC_3Cg1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17552004</pqid></control><display><type>article</type><title>Hebb and homeostasis in neuronal plasticity</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><creator>Turrigiano, Gina G ; Nelson, Sacha B</creator><creatorcontrib>Turrigiano, Gina G ; Nelson, Sacha B</creatorcontrib><description>The positive-feedback nature of Hebbian plasticity can destabilize the properties of neuronal networks. Recent work has demonstrated that this destabilizing influence is counteracted by a number of homeostatic plasticity mechanisms that stabilize neuronal activity. Such mechanisms include global changes in synaptic strengths, changes in neuronal excitability, and the regulation of synapse number. These recent studies suggest that Hebbian and homeostatic plasticity often target the same molecular substrates, and have opposing effects on synaptic or neuronal properties. These advances significantly broaden our framework for understanding the effects of activity on synaptic function and neuronal excitability.</description><identifier>ISSN: 0959-4388</identifier><identifier>EISSN: 1873-6882</identifier><identifier>DOI: 10.1016/S0959-4388(00)00091-X</identifier><identifier>PMID: 10851171</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Feedback - physiology ; Homeostasis ; Homeostasis - physiology ; LTD ; LTP ; Neuronal Plasticity - physiology ; Neurons - physiology ; Synaptic plasticity ; Synaptic scaling</subject><ispartof>Current Opinion in Neurobiology, 2000-06, Vol.10 (3), p.358-364</ispartof><rights>2000 Elsevier Science Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-71dd91b06dc438468d151d6df33c04e57f5907df5c92e8c82e7b292c515ef4a73</citedby><cites>FETCH-LOGICAL-c496t-71dd91b06dc438468d151d6df33c04e57f5907df5c92e8c82e7b292c515ef4a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0959-4388(00)00091-X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>313,314,778,782,790,3539,27905,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10851171$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Turrigiano, Gina G</creatorcontrib><creatorcontrib>Nelson, Sacha B</creatorcontrib><title>Hebb and homeostasis in neuronal plasticity</title><title>Current Opinion in Neurobiology</title><addtitle>Curr Opin Neurobiol</addtitle><description>The positive-feedback nature of Hebbian plasticity can destabilize the properties of neuronal networks. Recent work has demonstrated that this destabilizing influence is counteracted by a number of homeostatic plasticity mechanisms that stabilize neuronal activity. Such mechanisms include global changes in synaptic strengths, changes in neuronal excitability, and the regulation of synapse number. These recent studies suggest that Hebbian and homeostatic plasticity often target the same molecular substrates, and have opposing effects on synaptic or neuronal properties. These advances significantly broaden our framework for understanding the effects of activity on synaptic function and neuronal excitability.</description><subject>Animals</subject><subject>Feedback - physiology</subject><subject>Homeostasis</subject><subject>Homeostasis - physiology</subject><subject>LTD</subject><subject>LTP</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons - physiology</subject><subject>Synaptic plasticity</subject><subject>Synaptic scaling</subject><issn>0959-4388</issn><issn>1873-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEFLw0AQRhdRbK3-BCUnUSQ6k2SzuyeRolYoeFChtyXZneBKmtRsIvTfmzZFvPU0l_fNg8fYOcItAqZ3b6C4CpNYyiuAawBQGC4O2BiliMNUyuiQjf-QETvx_quH0ljGx2yEIDmiwDG7mVGeB1llg896SbVvM-984Kqgoq6pq6wMVmXmW2dcuz5lR0VWejrb3Qn7eHp8n87C-evzy_RhHppEpW0o0FqFOaTW9O4klRY52tQWcWwgIS4KrkDYghsVkTQyIpFHKjIcORVJJuIJuxz-rpr6uyPf6qXzhsoyq6juvBaICkUMe0EUnEcASQ_yATRN7X1DhV41bpk1a42gNzn1NqfetNIAeptTL_rdxU7Q5Uuy_1ZDvx64HwDqe_w4arQ3jipD1jVkWm1rt0fxC_3Cg1w</recordid><startdate>20000601</startdate><enddate>20000601</enddate><creator>Turrigiano, Gina G</creator><creator>Nelson, Sacha B</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20000601</creationdate><title>Hebb and homeostasis in neuronal plasticity</title><author>Turrigiano, Gina G ; Nelson, Sacha B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-71dd91b06dc438468d151d6df33c04e57f5907df5c92e8c82e7b292c515ef4a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Animals</topic><topic>Feedback - physiology</topic><topic>Homeostasis</topic><topic>Homeostasis - physiology</topic><topic>LTD</topic><topic>LTP</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons - physiology</topic><topic>Synaptic plasticity</topic><topic>Synaptic scaling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turrigiano, Gina G</creatorcontrib><creatorcontrib>Nelson, Sacha B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Current Opinion in Neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turrigiano, Gina G</au><au>Nelson, Sacha B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hebb and homeostasis in neuronal plasticity</atitle><jtitle>Current Opinion in Neurobiology</jtitle><addtitle>Curr Opin Neurobiol</addtitle><date>2000-06-01</date><risdate>2000</risdate><volume>10</volume><issue>3</issue><spage>358</spage><epage>364</epage><pages>358-364</pages><issn>0959-4388</issn><eissn>1873-6882</eissn><abstract>The positive-feedback nature of Hebbian plasticity can destabilize the properties of neuronal networks. Recent work has demonstrated that this destabilizing influence is counteracted by a number of homeostatic plasticity mechanisms that stabilize neuronal activity. Such mechanisms include global changes in synaptic strengths, changes in neuronal excitability, and the regulation of synapse number. These recent studies suggest that Hebbian and homeostatic plasticity often target the same molecular substrates, and have opposing effects on synaptic or neuronal properties. These advances significantly broaden our framework for understanding the effects of activity on synaptic function and neuronal excitability.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>10851171</pmid><doi>10.1016/S0959-4388(00)00091-X</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0959-4388 |
ispartof | Current Opinion in Neurobiology, 2000-06, Vol.10 (3), p.358-364 |
issn | 0959-4388 1873-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_71191730 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE |
subjects | Animals Feedback - physiology Homeostasis Homeostasis - physiology LTD LTP Neuronal Plasticity - physiology Neurons - physiology Synaptic plasticity Synaptic scaling |
title | Hebb and homeostasis in neuronal plasticity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A49%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hebb%20and%20homeostasis%20in%20neuronal%20plasticity&rft.jtitle=Current%20Opinion%20in%20Neurobiology&rft.au=Turrigiano,%20Gina%20G&rft.date=2000-06-01&rft.volume=10&rft.issue=3&rft.spage=358&rft.epage=364&rft.pages=358-364&rft.issn=0959-4388&rft.eissn=1873-6882&rft_id=info:doi/10.1016/S0959-4388(00)00091-X&rft_dat=%3Cproquest_cross%3E17552004%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17552004&rft_id=info:pmid/10851171&rft_els_id=S095943880000091X&rfr_iscdi=true |