Hebb and homeostasis in neuronal plasticity

The positive-feedback nature of Hebbian plasticity can destabilize the properties of neuronal networks. Recent work has demonstrated that this destabilizing influence is counteracted by a number of homeostatic plasticity mechanisms that stabilize neuronal activity. Such mechanisms include global cha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current Opinion in Neurobiology 2000-06, Vol.10 (3), p.358-364
Hauptverfasser: Turrigiano, Gina G, Nelson, Sacha B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 364
container_issue 3
container_start_page 358
container_title Current Opinion in Neurobiology
container_volume 10
creator Turrigiano, Gina G
Nelson, Sacha B
description The positive-feedback nature of Hebbian plasticity can destabilize the properties of neuronal networks. Recent work has demonstrated that this destabilizing influence is counteracted by a number of homeostatic plasticity mechanisms that stabilize neuronal activity. Such mechanisms include global changes in synaptic strengths, changes in neuronal excitability, and the regulation of synapse number. These recent studies suggest that Hebbian and homeostatic plasticity often target the same molecular substrates, and have opposing effects on synaptic or neuronal properties. These advances significantly broaden our framework for understanding the effects of activity on synaptic function and neuronal excitability.
doi_str_mv 10.1016/S0959-4388(00)00091-X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71191730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S095943880000091X</els_id><sourcerecordid>17552004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-71dd91b06dc438468d151d6df33c04e57f5907df5c92e8c82e7b292c515ef4a73</originalsourceid><addsrcrecordid>eNqFkEFLw0AQRhdRbK3-BCUnUSQ6k2SzuyeRolYoeFChtyXZneBKmtRsIvTfmzZFvPU0l_fNg8fYOcItAqZ3b6C4CpNYyiuAawBQGC4O2BiliMNUyuiQjf-QETvx_quH0ljGx2yEIDmiwDG7mVGeB1llg896SbVvM-984Kqgoq6pq6wMVmXmW2dcuz5lR0VWejrb3Qn7eHp8n87C-evzy_RhHppEpW0o0FqFOaTW9O4klRY52tQWcWwgIS4KrkDYghsVkTQyIpFHKjIcORVJJuIJuxz-rpr6uyPf6qXzhsoyq6juvBaICkUMe0EUnEcASQ_yATRN7X1DhV41bpk1a42gNzn1NqfetNIAeptTL_rdxU7Q5Uuy_1ZDvx64HwDqe_w4arQ3jipD1jVkWm1rt0fxC_3Cg1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17552004</pqid></control><display><type>article</type><title>Hebb and homeostasis in neuronal plasticity</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><creator>Turrigiano, Gina G ; Nelson, Sacha B</creator><creatorcontrib>Turrigiano, Gina G ; Nelson, Sacha B</creatorcontrib><description>The positive-feedback nature of Hebbian plasticity can destabilize the properties of neuronal networks. Recent work has demonstrated that this destabilizing influence is counteracted by a number of homeostatic plasticity mechanisms that stabilize neuronal activity. Such mechanisms include global changes in synaptic strengths, changes in neuronal excitability, and the regulation of synapse number. These recent studies suggest that Hebbian and homeostatic plasticity often target the same molecular substrates, and have opposing effects on synaptic or neuronal properties. These advances significantly broaden our framework for understanding the effects of activity on synaptic function and neuronal excitability.</description><identifier>ISSN: 0959-4388</identifier><identifier>EISSN: 1873-6882</identifier><identifier>DOI: 10.1016/S0959-4388(00)00091-X</identifier><identifier>PMID: 10851171</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Feedback - physiology ; Homeostasis ; Homeostasis - physiology ; LTD ; LTP ; Neuronal Plasticity - physiology ; Neurons - physiology ; Synaptic plasticity ; Synaptic scaling</subject><ispartof>Current Opinion in Neurobiology, 2000-06, Vol.10 (3), p.358-364</ispartof><rights>2000 Elsevier Science Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-71dd91b06dc438468d151d6df33c04e57f5907df5c92e8c82e7b292c515ef4a73</citedby><cites>FETCH-LOGICAL-c496t-71dd91b06dc438468d151d6df33c04e57f5907df5c92e8c82e7b292c515ef4a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0959-4388(00)00091-X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>313,314,778,782,790,3539,27905,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10851171$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Turrigiano, Gina G</creatorcontrib><creatorcontrib>Nelson, Sacha B</creatorcontrib><title>Hebb and homeostasis in neuronal plasticity</title><title>Current Opinion in Neurobiology</title><addtitle>Curr Opin Neurobiol</addtitle><description>The positive-feedback nature of Hebbian plasticity can destabilize the properties of neuronal networks. Recent work has demonstrated that this destabilizing influence is counteracted by a number of homeostatic plasticity mechanisms that stabilize neuronal activity. Such mechanisms include global changes in synaptic strengths, changes in neuronal excitability, and the regulation of synapse number. These recent studies suggest that Hebbian and homeostatic plasticity often target the same molecular substrates, and have opposing effects on synaptic or neuronal properties. These advances significantly broaden our framework for understanding the effects of activity on synaptic function and neuronal excitability.</description><subject>Animals</subject><subject>Feedback - physiology</subject><subject>Homeostasis</subject><subject>Homeostasis - physiology</subject><subject>LTD</subject><subject>LTP</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons - physiology</subject><subject>Synaptic plasticity</subject><subject>Synaptic scaling</subject><issn>0959-4388</issn><issn>1873-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEFLw0AQRhdRbK3-BCUnUSQ6k2SzuyeRolYoeFChtyXZneBKmtRsIvTfmzZFvPU0l_fNg8fYOcItAqZ3b6C4CpNYyiuAawBQGC4O2BiliMNUyuiQjf-QETvx_quH0ljGx2yEIDmiwDG7mVGeB1llg896SbVvM-984Kqgoq6pq6wMVmXmW2dcuz5lR0VWejrb3Qn7eHp8n87C-evzy_RhHppEpW0o0FqFOaTW9O4klRY52tQWcWwgIS4KrkDYghsVkTQyIpFHKjIcORVJJuIJuxz-rpr6uyPf6qXzhsoyq6juvBaICkUMe0EUnEcASQ_yATRN7X1DhV41bpk1a42gNzn1NqfetNIAeptTL_rdxU7Q5Uuy_1ZDvx64HwDqe_w4arQ3jipD1jVkWm1rt0fxC_3Cg1w</recordid><startdate>20000601</startdate><enddate>20000601</enddate><creator>Turrigiano, Gina G</creator><creator>Nelson, Sacha B</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20000601</creationdate><title>Hebb and homeostasis in neuronal plasticity</title><author>Turrigiano, Gina G ; Nelson, Sacha B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-71dd91b06dc438468d151d6df33c04e57f5907df5c92e8c82e7b292c515ef4a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Animals</topic><topic>Feedback - physiology</topic><topic>Homeostasis</topic><topic>Homeostasis - physiology</topic><topic>LTD</topic><topic>LTP</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons - physiology</topic><topic>Synaptic plasticity</topic><topic>Synaptic scaling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turrigiano, Gina G</creatorcontrib><creatorcontrib>Nelson, Sacha B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Current Opinion in Neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turrigiano, Gina G</au><au>Nelson, Sacha B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hebb and homeostasis in neuronal plasticity</atitle><jtitle>Current Opinion in Neurobiology</jtitle><addtitle>Curr Opin Neurobiol</addtitle><date>2000-06-01</date><risdate>2000</risdate><volume>10</volume><issue>3</issue><spage>358</spage><epage>364</epage><pages>358-364</pages><issn>0959-4388</issn><eissn>1873-6882</eissn><abstract>The positive-feedback nature of Hebbian plasticity can destabilize the properties of neuronal networks. Recent work has demonstrated that this destabilizing influence is counteracted by a number of homeostatic plasticity mechanisms that stabilize neuronal activity. Such mechanisms include global changes in synaptic strengths, changes in neuronal excitability, and the regulation of synapse number. These recent studies suggest that Hebbian and homeostatic plasticity often target the same molecular substrates, and have opposing effects on synaptic or neuronal properties. These advances significantly broaden our framework for understanding the effects of activity on synaptic function and neuronal excitability.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>10851171</pmid><doi>10.1016/S0959-4388(00)00091-X</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0959-4388
ispartof Current Opinion in Neurobiology, 2000-06, Vol.10 (3), p.358-364
issn 0959-4388
1873-6882
language eng
recordid cdi_proquest_miscellaneous_71191730
source Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE
subjects Animals
Feedback - physiology
Homeostasis
Homeostasis - physiology
LTD
LTP
Neuronal Plasticity - physiology
Neurons - physiology
Synaptic plasticity
Synaptic scaling
title Hebb and homeostasis in neuronal plasticity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A49%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hebb%20and%20homeostasis%20in%20neuronal%20plasticity&rft.jtitle=Current%20Opinion%20in%20Neurobiology&rft.au=Turrigiano,%20Gina%20G&rft.date=2000-06-01&rft.volume=10&rft.issue=3&rft.spage=358&rft.epage=364&rft.pages=358-364&rft.issn=0959-4388&rft.eissn=1873-6882&rft_id=info:doi/10.1016/S0959-4388(00)00091-X&rft_dat=%3Cproquest_cross%3E17552004%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17552004&rft_id=info:pmid/10851171&rft_els_id=S095943880000091X&rfr_iscdi=true