The effect of variations in pH and temperature on stability of melatonin in aqueous solution
Melatonin (N‐acetyl‐5‐methoxytryptamine) has a diverse range of functions, including the control of neuroendocrine events. A number of studies have shown that melatonin may be of potential benefit for the treatment of insomnia, as well as neurodegenerative disorders. At present, there are numerous d...
Gespeichert in:
Veröffentlicht in: | Journal of pineal research 2001-09, Vol.31 (2), p.155-158 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 158 |
---|---|
container_issue | 2 |
container_start_page | 155 |
container_title | Journal of pineal research |
container_volume | 31 |
creator | Daya, S. Walker, R.B. Glass, B.D. Anoopkumar-Dukie, S. |
description | Melatonin (N‐acetyl‐5‐methoxytryptamine) has a diverse range of functions, including the control of neuroendocrine events. A number of studies have shown that melatonin may be of potential benefit for the treatment of insomnia, as well as neurodegenerative disorders. At present, there are numerous dosage forms of melatonin, with the oral route of administration being most popular. Presently, there is little information on the stability of melatonin over a pH range. With the changes in pH in the gastro‐intestinal tract, as well as in different experimental conditions, information on the stability of melatonin would be important. We used a high‐performance liquid chromatography method to determine the stability of melatonin solutions over a pH range (1.2–12) at room temperature and at 37°C over a period of 21 days. The results show that no melatonin degradation occurred in the first 2 days. From days 3 to 21, there was a gradual decline in melatonin at all pHs, with the decline not exceeding 30%. No decline in melatonin levels occurred in the first 2 days at 37°C. From days 3 to 21, melatonin levels declined gradually, with the decline not exceeding 29%. |
doi_str_mv | 10.1034/j.1600-079x.2001.310209.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71172514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71172514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4389-f45843d6e72bd665d34d07f7f264a95834fdeefa09d371dad70fbe90ce1b0d813</originalsourceid><addsrcrecordid>eNqNkM1u1DAURi0EokPhFZBZwC7hOnbiZAetmE6hKl20ggWS5cTXwkN-pnYCM2-Powx0W8mSLfl83706hLxhkDLg4v02ZQVAArLapxkASzmDDKp0_4Ss_v18f0pWIEWWcKjKE_IihC0AlGVZPCcnjOV5ziRbkR-3P5GitdiMdLD0t_ZOj27oA3U93W2o7g0dsduh1-PkkQ49DaOuXevGwxzosNXj0Ec4Hn0_4TAFGoZ2mktekmdWtwFfHe9Tcrf-dHu-Sa6-Xlyef7xKGsHLKrEiLwU3BcqsNkWRGy4MSCttVghd5SUX1iBaDZXhkhltJNgaK2iQ1WBKxk_Ju6V354e4QhhV50KDbav7eR8lGZNZzkQEqwVs_BCCR6t23nXaHxQDNatVWzULVLNaNatVi1q1j9nXxyFT3aF5SB5dRuDtEdCh0a31um9ceOAEgyqXMnIfFu6Pa_Hw-A3U55vL5R0rkqXChRH3_yu0_6UKyWWuvl1fxJzcnH1Zn6k1_wtUM6XA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71172514</pqid></control><display><type>article</type><title>The effect of variations in pH and temperature on stability of melatonin in aqueous solution</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Daya, S. ; Walker, R.B. ; Glass, B.D. ; Anoopkumar-Dukie, S.</creator><creatorcontrib>Daya, S. ; Walker, R.B. ; Glass, B.D. ; Anoopkumar-Dukie, S.</creatorcontrib><description>Melatonin (N‐acetyl‐5‐methoxytryptamine) has a diverse range of functions, including the control of neuroendocrine events. A number of studies have shown that melatonin may be of potential benefit for the treatment of insomnia, as well as neurodegenerative disorders. At present, there are numerous dosage forms of melatonin, with the oral route of administration being most popular. Presently, there is little information on the stability of melatonin over a pH range. With the changes in pH in the gastro‐intestinal tract, as well as in different experimental conditions, information on the stability of melatonin would be important. We used a high‐performance liquid chromatography method to determine the stability of melatonin solutions over a pH range (1.2–12) at room temperature and at 37°C over a period of 21 days. The results show that no melatonin degradation occurred in the first 2 days. From days 3 to 21, there was a gradual decline in melatonin at all pHs, with the decline not exceeding 30%. No decline in melatonin levels occurred in the first 2 days at 37°C. From days 3 to 21, melatonin levels declined gradually, with the decline not exceeding 29%.</description><identifier>ISSN: 0742-3098</identifier><identifier>EISSN: 1600-079X</identifier><identifier>DOI: 10.1034/j.1600-079x.2001.310209.x</identifier><identifier>PMID: 11555171</identifier><identifier>CODEN: JPRSE9</identifier><language>eng</language><publisher>Copenhagen: Munksgaard International Publishers</publisher><subject>Administration, Oral ; Analytical, structural and metabolic biochemistry ; Biological and medical sciences ; Chromatography, High Pressure Liquid ; Digestive System - metabolism ; Drug Stability ; Fundamental and applied biological sciences. Psychology ; Humans ; Hydrogen-Ion Concentration ; In Vitro Techniques ; melatonin ; Melatonin - administration & dosage ; Melatonin - chemistry ; Melatonin - metabolism ; neuroprotection ; Non peptidic neurotransmitters, polyamines ; Other biological molecules ; Solutions ; stability ; Temperature</subject><ispartof>Journal of pineal research, 2001-09, Vol.31 (2), p.155-158</ispartof><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4389-f45843d6e72bd665d34d07f7f264a95834fdeefa09d371dad70fbe90ce1b0d813</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1034%2Fj.1600-079x.2001.310209.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1034%2Fj.1600-079x.2001.310209.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14109577$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11555171$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Daya, S.</creatorcontrib><creatorcontrib>Walker, R.B.</creatorcontrib><creatorcontrib>Glass, B.D.</creatorcontrib><creatorcontrib>Anoopkumar-Dukie, S.</creatorcontrib><title>The effect of variations in pH and temperature on stability of melatonin in aqueous solution</title><title>Journal of pineal research</title><addtitle>Journal of Pineal Research</addtitle><description>Melatonin (N‐acetyl‐5‐methoxytryptamine) has a diverse range of functions, including the control of neuroendocrine events. A number of studies have shown that melatonin may be of potential benefit for the treatment of insomnia, as well as neurodegenerative disorders. At present, there are numerous dosage forms of melatonin, with the oral route of administration being most popular. Presently, there is little information on the stability of melatonin over a pH range. With the changes in pH in the gastro‐intestinal tract, as well as in different experimental conditions, information on the stability of melatonin would be important. We used a high‐performance liquid chromatography method to determine the stability of melatonin solutions over a pH range (1.2–12) at room temperature and at 37°C over a period of 21 days. The results show that no melatonin degradation occurred in the first 2 days. From days 3 to 21, there was a gradual decline in melatonin at all pHs, with the decline not exceeding 30%. No decline in melatonin levels occurred in the first 2 days at 37°C. From days 3 to 21, melatonin levels declined gradually, with the decline not exceeding 29%.</description><subject>Administration, Oral</subject><subject>Analytical, structural and metabolic biochemistry</subject><subject>Biological and medical sciences</subject><subject>Chromatography, High Pressure Liquid</subject><subject>Digestive System - metabolism</subject><subject>Drug Stability</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>In Vitro Techniques</subject><subject>melatonin</subject><subject>Melatonin - administration & dosage</subject><subject>Melatonin - chemistry</subject><subject>Melatonin - metabolism</subject><subject>neuroprotection</subject><subject>Non peptidic neurotransmitters, polyamines</subject><subject>Other biological molecules</subject><subject>Solutions</subject><subject>stability</subject><subject>Temperature</subject><issn>0742-3098</issn><issn>1600-079X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkM1u1DAURi0EokPhFZBZwC7hOnbiZAetmE6hKl20ggWS5cTXwkN-pnYCM2-Powx0W8mSLfl83706hLxhkDLg4v02ZQVAArLapxkASzmDDKp0_4Ss_v18f0pWIEWWcKjKE_IihC0AlGVZPCcnjOV5ziRbkR-3P5GitdiMdLD0t_ZOj27oA3U93W2o7g0dsduh1-PkkQ49DaOuXevGwxzosNXj0Ec4Hn0_4TAFGoZ2mktekmdWtwFfHe9Tcrf-dHu-Sa6-Xlyef7xKGsHLKrEiLwU3BcqsNkWRGy4MSCttVghd5SUX1iBaDZXhkhltJNgaK2iQ1WBKxk_Ju6V354e4QhhV50KDbav7eR8lGZNZzkQEqwVs_BCCR6t23nXaHxQDNatVWzULVLNaNatVi1q1j9nXxyFT3aF5SB5dRuDtEdCh0a31um9ceOAEgyqXMnIfFu6Pa_Hw-A3U55vL5R0rkqXChRH3_yu0_6UKyWWuvl1fxJzcnH1Zn6k1_wtUM6XA</recordid><startdate>200109</startdate><enddate>200109</enddate><creator>Daya, S.</creator><creator>Walker, R.B.</creator><creator>Glass, B.D.</creator><creator>Anoopkumar-Dukie, S.</creator><general>Munksgaard International Publishers</general><general>Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200109</creationdate><title>The effect of variations in pH and temperature on stability of melatonin in aqueous solution</title><author>Daya, S. ; Walker, R.B. ; Glass, B.D. ; Anoopkumar-Dukie, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4389-f45843d6e72bd665d34d07f7f264a95834fdeefa09d371dad70fbe90ce1b0d813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Administration, Oral</topic><topic>Analytical, structural and metabolic biochemistry</topic><topic>Biological and medical sciences</topic><topic>Chromatography, High Pressure Liquid</topic><topic>Digestive System - metabolism</topic><topic>Drug Stability</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>In Vitro Techniques</topic><topic>melatonin</topic><topic>Melatonin - administration & dosage</topic><topic>Melatonin - chemistry</topic><topic>Melatonin - metabolism</topic><topic>neuroprotection</topic><topic>Non peptidic neurotransmitters, polyamines</topic><topic>Other biological molecules</topic><topic>Solutions</topic><topic>stability</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Daya, S.</creatorcontrib><creatorcontrib>Walker, R.B.</creatorcontrib><creatorcontrib>Glass, B.D.</creatorcontrib><creatorcontrib>Anoopkumar-Dukie, S.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of pineal research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daya, S.</au><au>Walker, R.B.</au><au>Glass, B.D.</au><au>Anoopkumar-Dukie, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of variations in pH and temperature on stability of melatonin in aqueous solution</atitle><jtitle>Journal of pineal research</jtitle><addtitle>Journal of Pineal Research</addtitle><date>2001-09</date><risdate>2001</risdate><volume>31</volume><issue>2</issue><spage>155</spage><epage>158</epage><pages>155-158</pages><issn>0742-3098</issn><eissn>1600-079X</eissn><coden>JPRSE9</coden><abstract>Melatonin (N‐acetyl‐5‐methoxytryptamine) has a diverse range of functions, including the control of neuroendocrine events. A number of studies have shown that melatonin may be of potential benefit for the treatment of insomnia, as well as neurodegenerative disorders. At present, there are numerous dosage forms of melatonin, with the oral route of administration being most popular. Presently, there is little information on the stability of melatonin over a pH range. With the changes in pH in the gastro‐intestinal tract, as well as in different experimental conditions, information on the stability of melatonin would be important. We used a high‐performance liquid chromatography method to determine the stability of melatonin solutions over a pH range (1.2–12) at room temperature and at 37°C over a period of 21 days. The results show that no melatonin degradation occurred in the first 2 days. From days 3 to 21, there was a gradual decline in melatonin at all pHs, with the decline not exceeding 30%. No decline in melatonin levels occurred in the first 2 days at 37°C. From days 3 to 21, melatonin levels declined gradually, with the decline not exceeding 29%.</abstract><cop>Copenhagen</cop><pub>Munksgaard International Publishers</pub><pmid>11555171</pmid><doi>10.1034/j.1600-079x.2001.310209.x</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0742-3098 |
ispartof | Journal of pineal research, 2001-09, Vol.31 (2), p.155-158 |
issn | 0742-3098 1600-079X |
language | eng |
recordid | cdi_proquest_miscellaneous_71172514 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Administration, Oral Analytical, structural and metabolic biochemistry Biological and medical sciences Chromatography, High Pressure Liquid Digestive System - metabolism Drug Stability Fundamental and applied biological sciences. Psychology Humans Hydrogen-Ion Concentration In Vitro Techniques melatonin Melatonin - administration & dosage Melatonin - chemistry Melatonin - metabolism neuroprotection Non peptidic neurotransmitters, polyamines Other biological molecules Solutions stability Temperature |
title | The effect of variations in pH and temperature on stability of melatonin in aqueous solution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A34%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20variations%20in%20pH%20and%20temperature%20on%20stability%20of%20melatonin%20in%20aqueous%20solution&rft.jtitle=Journal%20of%20pineal%20research&rft.au=Daya,%20S.&rft.date=2001-09&rft.volume=31&rft.issue=2&rft.spage=155&rft.epage=158&rft.pages=155-158&rft.issn=0742-3098&rft.eissn=1600-079X&rft.coden=JPRSE9&rft_id=info:doi/10.1034/j.1600-079x.2001.310209.x&rft_dat=%3Cproquest_cross%3E71172514%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71172514&rft_id=info:pmid/11555171&rfr_iscdi=true |