The effect of variations in pH and temperature on stability of melatonin in aqueous solution

Melatonin (N‐acetyl‐5‐methoxytryptamine) has a diverse range of functions, including the control of neuroendocrine events. A number of studies have shown that melatonin may be of potential benefit for the treatment of insomnia, as well as neurodegenerative disorders. At present, there are numerous d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pineal research 2001-09, Vol.31 (2), p.155-158
Hauptverfasser: Daya, S., Walker, R.B., Glass, B.D., Anoopkumar-Dukie, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 158
container_issue 2
container_start_page 155
container_title Journal of pineal research
container_volume 31
creator Daya, S.
Walker, R.B.
Glass, B.D.
Anoopkumar-Dukie, S.
description Melatonin (N‐acetyl‐5‐methoxytryptamine) has a diverse range of functions, including the control of neuroendocrine events. A number of studies have shown that melatonin may be of potential benefit for the treatment of insomnia, as well as neurodegenerative disorders. At present, there are numerous dosage forms of melatonin, with the oral route of administration being most popular. Presently, there is little information on the stability of melatonin over a pH range. With the changes in pH in the gastro‐intestinal tract, as well as in different experimental conditions, information on the stability of melatonin would be important. We used a high‐performance liquid chromatography method to determine the stability of melatonin solutions over a pH range (1.2–12) at room temperature and at 37°C over a period of 21 days. The results show that no melatonin degradation occurred in the first 2 days. From days 3 to 21, there was a gradual decline in melatonin at all pHs, with the decline not exceeding 30%. No decline in melatonin levels occurred in the first 2 days at 37°C. From days 3 to 21, melatonin levels declined gradually, with the decline not exceeding 29%.
doi_str_mv 10.1034/j.1600-079x.2001.310209.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71172514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71172514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4389-f45843d6e72bd665d34d07f7f264a95834fdeefa09d371dad70fbe90ce1b0d813</originalsourceid><addsrcrecordid>eNqNkM1u1DAURi0EokPhFZBZwC7hOnbiZAetmE6hKl20ggWS5cTXwkN-pnYCM2-Powx0W8mSLfl83706hLxhkDLg4v02ZQVAArLapxkASzmDDKp0_4Ss_v18f0pWIEWWcKjKE_IihC0AlGVZPCcnjOV5ziRbkR-3P5GitdiMdLD0t_ZOj27oA3U93W2o7g0dsduh1-PkkQ49DaOuXevGwxzosNXj0Ec4Hn0_4TAFGoZ2mktekmdWtwFfHe9Tcrf-dHu-Sa6-Xlyef7xKGsHLKrEiLwU3BcqsNkWRGy4MSCttVghd5SUX1iBaDZXhkhltJNgaK2iQ1WBKxk_Ju6V354e4QhhV50KDbav7eR8lGZNZzkQEqwVs_BCCR6t23nXaHxQDNatVWzULVLNaNatVi1q1j9nXxyFT3aF5SB5dRuDtEdCh0a31um9ceOAEgyqXMnIfFu6Pa_Hw-A3U55vL5R0rkqXChRH3_yu0_6UKyWWuvl1fxJzcnH1Zn6k1_wtUM6XA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71172514</pqid></control><display><type>article</type><title>The effect of variations in pH and temperature on stability of melatonin in aqueous solution</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Daya, S. ; Walker, R.B. ; Glass, B.D. ; Anoopkumar-Dukie, S.</creator><creatorcontrib>Daya, S. ; Walker, R.B. ; Glass, B.D. ; Anoopkumar-Dukie, S.</creatorcontrib><description>Melatonin (N‐acetyl‐5‐methoxytryptamine) has a diverse range of functions, including the control of neuroendocrine events. A number of studies have shown that melatonin may be of potential benefit for the treatment of insomnia, as well as neurodegenerative disorders. At present, there are numerous dosage forms of melatonin, with the oral route of administration being most popular. Presently, there is little information on the stability of melatonin over a pH range. With the changes in pH in the gastro‐intestinal tract, as well as in different experimental conditions, information on the stability of melatonin would be important. We used a high‐performance liquid chromatography method to determine the stability of melatonin solutions over a pH range (1.2–12) at room temperature and at 37°C over a period of 21 days. The results show that no melatonin degradation occurred in the first 2 days. From days 3 to 21, there was a gradual decline in melatonin at all pHs, with the decline not exceeding 30%. No decline in melatonin levels occurred in the first 2 days at 37°C. From days 3 to 21, melatonin levels declined gradually, with the decline not exceeding 29%.</description><identifier>ISSN: 0742-3098</identifier><identifier>EISSN: 1600-079X</identifier><identifier>DOI: 10.1034/j.1600-079x.2001.310209.x</identifier><identifier>PMID: 11555171</identifier><identifier>CODEN: JPRSE9</identifier><language>eng</language><publisher>Copenhagen: Munksgaard International Publishers</publisher><subject>Administration, Oral ; Analytical, structural and metabolic biochemistry ; Biological and medical sciences ; Chromatography, High Pressure Liquid ; Digestive System - metabolism ; Drug Stability ; Fundamental and applied biological sciences. Psychology ; Humans ; Hydrogen-Ion Concentration ; In Vitro Techniques ; melatonin ; Melatonin - administration &amp; dosage ; Melatonin - chemistry ; Melatonin - metabolism ; neuroprotection ; Non peptidic neurotransmitters, polyamines ; Other biological molecules ; Solutions ; stability ; Temperature</subject><ispartof>Journal of pineal research, 2001-09, Vol.31 (2), p.155-158</ispartof><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4389-f45843d6e72bd665d34d07f7f264a95834fdeefa09d371dad70fbe90ce1b0d813</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1034%2Fj.1600-079x.2001.310209.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1034%2Fj.1600-079x.2001.310209.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14109577$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11555171$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Daya, S.</creatorcontrib><creatorcontrib>Walker, R.B.</creatorcontrib><creatorcontrib>Glass, B.D.</creatorcontrib><creatorcontrib>Anoopkumar-Dukie, S.</creatorcontrib><title>The effect of variations in pH and temperature on stability of melatonin in aqueous solution</title><title>Journal of pineal research</title><addtitle>Journal of Pineal Research</addtitle><description>Melatonin (N‐acetyl‐5‐methoxytryptamine) has a diverse range of functions, including the control of neuroendocrine events. A number of studies have shown that melatonin may be of potential benefit for the treatment of insomnia, as well as neurodegenerative disorders. At present, there are numerous dosage forms of melatonin, with the oral route of administration being most popular. Presently, there is little information on the stability of melatonin over a pH range. With the changes in pH in the gastro‐intestinal tract, as well as in different experimental conditions, information on the stability of melatonin would be important. We used a high‐performance liquid chromatography method to determine the stability of melatonin solutions over a pH range (1.2–12) at room temperature and at 37°C over a period of 21 days. The results show that no melatonin degradation occurred in the first 2 days. From days 3 to 21, there was a gradual decline in melatonin at all pHs, with the decline not exceeding 30%. No decline in melatonin levels occurred in the first 2 days at 37°C. From days 3 to 21, melatonin levels declined gradually, with the decline not exceeding 29%.</description><subject>Administration, Oral</subject><subject>Analytical, structural and metabolic biochemistry</subject><subject>Biological and medical sciences</subject><subject>Chromatography, High Pressure Liquid</subject><subject>Digestive System - metabolism</subject><subject>Drug Stability</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>In Vitro Techniques</subject><subject>melatonin</subject><subject>Melatonin - administration &amp; dosage</subject><subject>Melatonin - chemistry</subject><subject>Melatonin - metabolism</subject><subject>neuroprotection</subject><subject>Non peptidic neurotransmitters, polyamines</subject><subject>Other biological molecules</subject><subject>Solutions</subject><subject>stability</subject><subject>Temperature</subject><issn>0742-3098</issn><issn>1600-079X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkM1u1DAURi0EokPhFZBZwC7hOnbiZAetmE6hKl20ggWS5cTXwkN-pnYCM2-Powx0W8mSLfl83706hLxhkDLg4v02ZQVAArLapxkASzmDDKp0_4Ss_v18f0pWIEWWcKjKE_IihC0AlGVZPCcnjOV5ziRbkR-3P5GitdiMdLD0t_ZOj27oA3U93W2o7g0dsduh1-PkkQ49DaOuXevGwxzosNXj0Ec4Hn0_4TAFGoZ2mktekmdWtwFfHe9Tcrf-dHu-Sa6-Xlyef7xKGsHLKrEiLwU3BcqsNkWRGy4MSCttVghd5SUX1iBaDZXhkhltJNgaK2iQ1WBKxk_Ju6V354e4QhhV50KDbav7eR8lGZNZzkQEqwVs_BCCR6t23nXaHxQDNatVWzULVLNaNatVi1q1j9nXxyFT3aF5SB5dRuDtEdCh0a31um9ceOAEgyqXMnIfFu6Pa_Hw-A3U55vL5R0rkqXChRH3_yu0_6UKyWWuvl1fxJzcnH1Zn6k1_wtUM6XA</recordid><startdate>200109</startdate><enddate>200109</enddate><creator>Daya, S.</creator><creator>Walker, R.B.</creator><creator>Glass, B.D.</creator><creator>Anoopkumar-Dukie, S.</creator><general>Munksgaard International Publishers</general><general>Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200109</creationdate><title>The effect of variations in pH and temperature on stability of melatonin in aqueous solution</title><author>Daya, S. ; Walker, R.B. ; Glass, B.D. ; Anoopkumar-Dukie, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4389-f45843d6e72bd665d34d07f7f264a95834fdeefa09d371dad70fbe90ce1b0d813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Administration, Oral</topic><topic>Analytical, structural and metabolic biochemistry</topic><topic>Biological and medical sciences</topic><topic>Chromatography, High Pressure Liquid</topic><topic>Digestive System - metabolism</topic><topic>Drug Stability</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>In Vitro Techniques</topic><topic>melatonin</topic><topic>Melatonin - administration &amp; dosage</topic><topic>Melatonin - chemistry</topic><topic>Melatonin - metabolism</topic><topic>neuroprotection</topic><topic>Non peptidic neurotransmitters, polyamines</topic><topic>Other biological molecules</topic><topic>Solutions</topic><topic>stability</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Daya, S.</creatorcontrib><creatorcontrib>Walker, R.B.</creatorcontrib><creatorcontrib>Glass, B.D.</creatorcontrib><creatorcontrib>Anoopkumar-Dukie, S.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of pineal research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daya, S.</au><au>Walker, R.B.</au><au>Glass, B.D.</au><au>Anoopkumar-Dukie, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of variations in pH and temperature on stability of melatonin in aqueous solution</atitle><jtitle>Journal of pineal research</jtitle><addtitle>Journal of Pineal Research</addtitle><date>2001-09</date><risdate>2001</risdate><volume>31</volume><issue>2</issue><spage>155</spage><epage>158</epage><pages>155-158</pages><issn>0742-3098</issn><eissn>1600-079X</eissn><coden>JPRSE9</coden><abstract>Melatonin (N‐acetyl‐5‐methoxytryptamine) has a diverse range of functions, including the control of neuroendocrine events. A number of studies have shown that melatonin may be of potential benefit for the treatment of insomnia, as well as neurodegenerative disorders. At present, there are numerous dosage forms of melatonin, with the oral route of administration being most popular. Presently, there is little information on the stability of melatonin over a pH range. With the changes in pH in the gastro‐intestinal tract, as well as in different experimental conditions, information on the stability of melatonin would be important. We used a high‐performance liquid chromatography method to determine the stability of melatonin solutions over a pH range (1.2–12) at room temperature and at 37°C over a period of 21 days. The results show that no melatonin degradation occurred in the first 2 days. From days 3 to 21, there was a gradual decline in melatonin at all pHs, with the decline not exceeding 30%. No decline in melatonin levels occurred in the first 2 days at 37°C. From days 3 to 21, melatonin levels declined gradually, with the decline not exceeding 29%.</abstract><cop>Copenhagen</cop><pub>Munksgaard International Publishers</pub><pmid>11555171</pmid><doi>10.1034/j.1600-079x.2001.310209.x</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0742-3098
ispartof Journal of pineal research, 2001-09, Vol.31 (2), p.155-158
issn 0742-3098
1600-079X
language eng
recordid cdi_proquest_miscellaneous_71172514
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Administration, Oral
Analytical, structural and metabolic biochemistry
Biological and medical sciences
Chromatography, High Pressure Liquid
Digestive System - metabolism
Drug Stability
Fundamental and applied biological sciences. Psychology
Humans
Hydrogen-Ion Concentration
In Vitro Techniques
melatonin
Melatonin - administration & dosage
Melatonin - chemistry
Melatonin - metabolism
neuroprotection
Non peptidic neurotransmitters, polyamines
Other biological molecules
Solutions
stability
Temperature
title The effect of variations in pH and temperature on stability of melatonin in aqueous solution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A34%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20variations%20in%20pH%20and%20temperature%20on%20stability%20of%20melatonin%20in%20aqueous%20solution&rft.jtitle=Journal%20of%20pineal%20research&rft.au=Daya,%20S.&rft.date=2001-09&rft.volume=31&rft.issue=2&rft.spage=155&rft.epage=158&rft.pages=155-158&rft.issn=0742-3098&rft.eissn=1600-079X&rft.coden=JPRSE9&rft_id=info:doi/10.1034/j.1600-079x.2001.310209.x&rft_dat=%3Cproquest_cross%3E71172514%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71172514&rft_id=info:pmid/11555171&rfr_iscdi=true