Delta 9-tetrahydrocannabinol-induced MAPK/ERK and Elk-1 activation in vivo depends on dopaminergic transmission
It is now well established that central effects of Delta 9-tetrahydrocannabinol (THC), the main psychoactive component of marijuana, are mediated by CB1 cannabinoid receptors. However, intraneuronal signalling pathways activated in vivo by THC remain poorly understood. We show that acute administrat...
Gespeichert in:
Veröffentlicht in: | The European journal of neuroscience 2001-07, Vol.14 (2), p.342-352 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 352 |
---|---|
container_issue | 2 |
container_start_page | 342 |
container_title | The European journal of neuroscience |
container_volume | 14 |
creator | Valjent, E Pagès, C Rogard, M Besson, M J Maldonado, R Caboche, J |
description | It is now well established that central effects of Delta 9-tetrahydrocannabinol (THC), the main psychoactive component of marijuana, are mediated by CB1 cannabinoid receptors. However, intraneuronal signalling pathways activated in vivo by THC remain poorly understood. We show that acute administration of THC induces a progressive and transient activation (i.e. phosphorylation) of the mitogen activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) in the dorsal striatum and the nucleus accumbens (NA). This activation, corresponding to both neuronal cell bodies and the surrounding neuropil, is totally inhibited by the selective antagonist of CB1 cannabinoid receptors, SR 141716A. However, blockade of dopaminergic (DA) D1 receptors by administration of SCH 23390, prior to THC, totally prevents ERK activation in the striatum, thus demonstrating a critical involvement of DA systems in THC-induced ERK activation. DA-D2 and glutamate receptors of NMDA subtypes also participate, albeit to a lesser extent, to THC-induced ERK activation in the striatum, as shown after injection of selective antagonists (raclopride and MK801, respectively). Furthermore, THC-induced phosphorylation of the transcription factor Elk-1, and up-regulation of zif268 mRNA expression are blocked by SL327, a specific inhibitor of MAPK/ERK kinase (MEK), the upstream kinase of ERK, as well as SCH 23390. Finally, using the place-preference paradigm, we show that ERK inhibition blocks THC-induced rewarding properties. Altogether, our data strongly support that ERK activation in the striatum is critically involved in long-term neuronal adaptive responses underlying THC-induced long-term behaviours. |
doi_str_mv | 10.1046/j.0953-816x.2001.01652.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_71166548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808644369</sourcerecordid><originalsourceid>FETCH-LOGICAL-p172t-97975ec51a3de753d221f9be03434fc06c009379cbef47e1288431445c5f15183</originalsourceid><addsrcrecordid>eNp90F1LwzAUBuAgipvTvyC5Em_a5TQfbS7HnB9MUUTBu5EmqWa2aW26sf17O9xuvTpweHh5eRHCQGIgTIyXMZGcRhmITZwQAjEBwZN4c4SGwASJJBfZMRoe0McAnYWwJIRkgvFTNADgnCYZG6L6xpadwjLqbNeqr61pa628V7nzdRk5b1baGvw0eZmPZ69zrLzBs_I7Aqx059aqc7XHzuO1W9fY2MZ6E3D_MnWjKudt--k07oN9qFwIPT5HJ4Uqg73Y3xF6v529Te-jx-e7h-nkMWogTbpIpjLlVnNQ1NiUU5MkUMjcEsooKzQRmhBJU6lzW7DUQpJljAJjXPMCOGR0hK7-cpu2_lnZ0C36AtqWpfK2XoVFCiAEZzt4_S-EbDcao0L29HJPV3llzaJpXaXa7eKwJv0FmDR4SQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808644369</pqid></control><display><type>article</type><title>Delta 9-tetrahydrocannabinol-induced MAPK/ERK and Elk-1 activation in vivo depends on dopaminergic transmission</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Valjent, E ; Pagès, C ; Rogard, M ; Besson, M J ; Maldonado, R ; Caboche, J</creator><creatorcontrib>Valjent, E ; Pagès, C ; Rogard, M ; Besson, M J ; Maldonado, R ; Caboche, J</creatorcontrib><description>It is now well established that central effects of Delta 9-tetrahydrocannabinol (THC), the main psychoactive component of marijuana, are mediated by CB1 cannabinoid receptors. However, intraneuronal signalling pathways activated in vivo by THC remain poorly understood. We show that acute administration of THC induces a progressive and transient activation (i.e. phosphorylation) of the mitogen activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) in the dorsal striatum and the nucleus accumbens (NA). This activation, corresponding to both neuronal cell bodies and the surrounding neuropil, is totally inhibited by the selective antagonist of CB1 cannabinoid receptors, SR 141716A. However, blockade of dopaminergic (DA) D1 receptors by administration of SCH 23390, prior to THC, totally prevents ERK activation in the striatum, thus demonstrating a critical involvement of DA systems in THC-induced ERK activation. DA-D2 and glutamate receptors of NMDA subtypes also participate, albeit to a lesser extent, to THC-induced ERK activation in the striatum, as shown after injection of selective antagonists (raclopride and MK801, respectively). Furthermore, THC-induced phosphorylation of the transcription factor Elk-1, and up-regulation of zif268 mRNA expression are blocked by SL327, a specific inhibitor of MAPK/ERK kinase (MEK), the upstream kinase of ERK, as well as SCH 23390. Finally, using the place-preference paradigm, we show that ERK inhibition blocks THC-induced rewarding properties. Altogether, our data strongly support that ERK activation in the striatum is critically involved in long-term neuronal adaptive responses underlying THC-induced long-term behaviours.</description><identifier>ISSN: 0953-816X</identifier><identifier>EISSN: 1460-9568</identifier><identifier>DOI: 10.1046/j.0953-816x.2001.01652.x</identifier><identifier>PMID: 11553284</identifier><language>eng</language><publisher>France</publisher><subject>Animals ; Behavior, Animal - drug effects ; Behavior, Animal - physiology ; Benzazepines - pharmacology ; Conditioning (Psychology) - drug effects ; Conditioning (Psychology) - physiology ; Dizocilpine Maleate - pharmacology ; DNA-Binding Proteins - genetics ; Dopamine - metabolism ; Dopamine Antagonists - pharmacology ; Dronabinol - pharmacology ; Early Growth Response Protein 1 ; ets-Domain Protein Elk-1 ; Excitatory Amino Acid Antagonists - pharmacology ; Immediate-Early Proteins ; Male ; Mice ; Mitogen-Activated Protein Kinases - drug effects ; Mitogen-Activated Protein Kinases - metabolism ; Neostriatum - cytology ; Neostriatum - drug effects ; Neostriatum - enzymology ; Neurons - cytology ; Neurons - drug effects ; Neurons - enzymology ; Nucleus Accumbens - cytology ; Nucleus Accumbens - drug effects ; Nucleus Accumbens - enzymology ; Pharmacokinetics ; Phosphorylation - drug effects ; Proto-Oncogene Proteins - drug effects ; Proto-Oncogene Proteins - metabolism ; Receptors, Cannabinoid ; Receptors, Dopamine D1 - antagonists & inhibitors ; Receptors, Dopamine D1 - metabolism ; Receptors, Drug - drug effects ; Receptors, Drug - metabolism ; Receptors, Glutamate - drug effects ; Receptors, Glutamate - metabolism ; Reward ; RNA, Messenger - metabolism ; Synaptic Transmission - drug effects ; Synaptic Transmission - physiology ; Transcription Factors - genetics ; Transcription, Genetic - drug effects ; Transcription, Genetic - physiology</subject><ispartof>The European journal of neuroscience, 2001-07, Vol.14 (2), p.342-352</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11553284$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Valjent, E</creatorcontrib><creatorcontrib>Pagès, C</creatorcontrib><creatorcontrib>Rogard, M</creatorcontrib><creatorcontrib>Besson, M J</creatorcontrib><creatorcontrib>Maldonado, R</creatorcontrib><creatorcontrib>Caboche, J</creatorcontrib><title>Delta 9-tetrahydrocannabinol-induced MAPK/ERK and Elk-1 activation in vivo depends on dopaminergic transmission</title><title>The European journal of neuroscience</title><addtitle>Eur J Neurosci</addtitle><description>It is now well established that central effects of Delta 9-tetrahydrocannabinol (THC), the main psychoactive component of marijuana, are mediated by CB1 cannabinoid receptors. However, intraneuronal signalling pathways activated in vivo by THC remain poorly understood. We show that acute administration of THC induces a progressive and transient activation (i.e. phosphorylation) of the mitogen activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) in the dorsal striatum and the nucleus accumbens (NA). This activation, corresponding to both neuronal cell bodies and the surrounding neuropil, is totally inhibited by the selective antagonist of CB1 cannabinoid receptors, SR 141716A. However, blockade of dopaminergic (DA) D1 receptors by administration of SCH 23390, prior to THC, totally prevents ERK activation in the striatum, thus demonstrating a critical involvement of DA systems in THC-induced ERK activation. DA-D2 and glutamate receptors of NMDA subtypes also participate, albeit to a lesser extent, to THC-induced ERK activation in the striatum, as shown after injection of selective antagonists (raclopride and MK801, respectively). Furthermore, THC-induced phosphorylation of the transcription factor Elk-1, and up-regulation of zif268 mRNA expression are blocked by SL327, a specific inhibitor of MAPK/ERK kinase (MEK), the upstream kinase of ERK, as well as SCH 23390. Finally, using the place-preference paradigm, we show that ERK inhibition blocks THC-induced rewarding properties. Altogether, our data strongly support that ERK activation in the striatum is critically involved in long-term neuronal adaptive responses underlying THC-induced long-term behaviours.</description><subject>Animals</subject><subject>Behavior, Animal - drug effects</subject><subject>Behavior, Animal - physiology</subject><subject>Benzazepines - pharmacology</subject><subject>Conditioning (Psychology) - drug effects</subject><subject>Conditioning (Psychology) - physiology</subject><subject>Dizocilpine Maleate - pharmacology</subject><subject>DNA-Binding Proteins - genetics</subject><subject>Dopamine - metabolism</subject><subject>Dopamine Antagonists - pharmacology</subject><subject>Dronabinol - pharmacology</subject><subject>Early Growth Response Protein 1</subject><subject>ets-Domain Protein Elk-1</subject><subject>Excitatory Amino Acid Antagonists - pharmacology</subject><subject>Immediate-Early Proteins</subject><subject>Male</subject><subject>Mice</subject><subject>Mitogen-Activated Protein Kinases - drug effects</subject><subject>Mitogen-Activated Protein Kinases - metabolism</subject><subject>Neostriatum - cytology</subject><subject>Neostriatum - drug effects</subject><subject>Neostriatum - enzymology</subject><subject>Neurons - cytology</subject><subject>Neurons - drug effects</subject><subject>Neurons - enzymology</subject><subject>Nucleus Accumbens - cytology</subject><subject>Nucleus Accumbens - drug effects</subject><subject>Nucleus Accumbens - enzymology</subject><subject>Pharmacokinetics</subject><subject>Phosphorylation - drug effects</subject><subject>Proto-Oncogene Proteins - drug effects</subject><subject>Proto-Oncogene Proteins - metabolism</subject><subject>Receptors, Cannabinoid</subject><subject>Receptors, Dopamine D1 - antagonists & inhibitors</subject><subject>Receptors, Dopamine D1 - metabolism</subject><subject>Receptors, Drug - drug effects</subject><subject>Receptors, Drug - metabolism</subject><subject>Receptors, Glutamate - drug effects</subject><subject>Receptors, Glutamate - metabolism</subject><subject>Reward</subject><subject>RNA, Messenger - metabolism</subject><subject>Synaptic Transmission - drug effects</subject><subject>Synaptic Transmission - physiology</subject><subject>Transcription Factors - genetics</subject><subject>Transcription, Genetic - drug effects</subject><subject>Transcription, Genetic - physiology</subject><issn>0953-816X</issn><issn>1460-9568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90F1LwzAUBuAgipvTvyC5Em_a5TQfbS7HnB9MUUTBu5EmqWa2aW26sf17O9xuvTpweHh5eRHCQGIgTIyXMZGcRhmITZwQAjEBwZN4c4SGwASJJBfZMRoe0McAnYWwJIRkgvFTNADgnCYZG6L6xpadwjLqbNeqr61pa628V7nzdRk5b1baGvw0eZmPZ69zrLzBs_I7Aqx059aqc7XHzuO1W9fY2MZ6E3D_MnWjKudt--k07oN9qFwIPT5HJ4Uqg73Y3xF6v529Te-jx-e7h-nkMWogTbpIpjLlVnNQ1NiUU5MkUMjcEsooKzQRmhBJU6lzW7DUQpJljAJjXPMCOGR0hK7-cpu2_lnZ0C36AtqWpfK2XoVFCiAEZzt4_S-EbDcao0L29HJPV3llzaJpXaXa7eKwJv0FmDR4SQ</recordid><startdate>200107</startdate><enddate>200107</enddate><creator>Valjent, E</creator><creator>Pagès, C</creator><creator>Rogard, M</creator><creator>Besson, M J</creator><creator>Maldonado, R</creator><creator>Caboche, J</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>200107</creationdate><title>Delta 9-tetrahydrocannabinol-induced MAPK/ERK and Elk-1 activation in vivo depends on dopaminergic transmission</title><author>Valjent, E ; Pagès, C ; Rogard, M ; Besson, M J ; Maldonado, R ; Caboche, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p172t-97975ec51a3de753d221f9be03434fc06c009379cbef47e1288431445c5f15183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Animals</topic><topic>Behavior, Animal - drug effects</topic><topic>Behavior, Animal - physiology</topic><topic>Benzazepines - pharmacology</topic><topic>Conditioning (Psychology) - drug effects</topic><topic>Conditioning (Psychology) - physiology</topic><topic>Dizocilpine Maleate - pharmacology</topic><topic>DNA-Binding Proteins - genetics</topic><topic>Dopamine - metabolism</topic><topic>Dopamine Antagonists - pharmacology</topic><topic>Dronabinol - pharmacology</topic><topic>Early Growth Response Protein 1</topic><topic>ets-Domain Protein Elk-1</topic><topic>Excitatory Amino Acid Antagonists - pharmacology</topic><topic>Immediate-Early Proteins</topic><topic>Male</topic><topic>Mice</topic><topic>Mitogen-Activated Protein Kinases - drug effects</topic><topic>Mitogen-Activated Protein Kinases - metabolism</topic><topic>Neostriatum - cytology</topic><topic>Neostriatum - drug effects</topic><topic>Neostriatum - enzymology</topic><topic>Neurons - cytology</topic><topic>Neurons - drug effects</topic><topic>Neurons - enzymology</topic><topic>Nucleus Accumbens - cytology</topic><topic>Nucleus Accumbens - drug effects</topic><topic>Nucleus Accumbens - enzymology</topic><topic>Pharmacokinetics</topic><topic>Phosphorylation - drug effects</topic><topic>Proto-Oncogene Proteins - drug effects</topic><topic>Proto-Oncogene Proteins - metabolism</topic><topic>Receptors, Cannabinoid</topic><topic>Receptors, Dopamine D1 - antagonists & inhibitors</topic><topic>Receptors, Dopamine D1 - metabolism</topic><topic>Receptors, Drug - drug effects</topic><topic>Receptors, Drug - metabolism</topic><topic>Receptors, Glutamate - drug effects</topic><topic>Receptors, Glutamate - metabolism</topic><topic>Reward</topic><topic>RNA, Messenger - metabolism</topic><topic>Synaptic Transmission - drug effects</topic><topic>Synaptic Transmission - physiology</topic><topic>Transcription Factors - genetics</topic><topic>Transcription, Genetic - drug effects</topic><topic>Transcription, Genetic - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valjent, E</creatorcontrib><creatorcontrib>Pagès, C</creatorcontrib><creatorcontrib>Rogard, M</creatorcontrib><creatorcontrib>Besson, M J</creatorcontrib><creatorcontrib>Maldonado, R</creatorcontrib><creatorcontrib>Caboche, J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The European journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valjent, E</au><au>Pagès, C</au><au>Rogard, M</au><au>Besson, M J</au><au>Maldonado, R</au><au>Caboche, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Delta 9-tetrahydrocannabinol-induced MAPK/ERK and Elk-1 activation in vivo depends on dopaminergic transmission</atitle><jtitle>The European journal of neuroscience</jtitle><addtitle>Eur J Neurosci</addtitle><date>2001-07</date><risdate>2001</risdate><volume>14</volume><issue>2</issue><spage>342</spage><epage>352</epage><pages>342-352</pages><issn>0953-816X</issn><eissn>1460-9568</eissn><abstract>It is now well established that central effects of Delta 9-tetrahydrocannabinol (THC), the main psychoactive component of marijuana, are mediated by CB1 cannabinoid receptors. However, intraneuronal signalling pathways activated in vivo by THC remain poorly understood. We show that acute administration of THC induces a progressive and transient activation (i.e. phosphorylation) of the mitogen activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) in the dorsal striatum and the nucleus accumbens (NA). This activation, corresponding to both neuronal cell bodies and the surrounding neuropil, is totally inhibited by the selective antagonist of CB1 cannabinoid receptors, SR 141716A. However, blockade of dopaminergic (DA) D1 receptors by administration of SCH 23390, prior to THC, totally prevents ERK activation in the striatum, thus demonstrating a critical involvement of DA systems in THC-induced ERK activation. DA-D2 and glutamate receptors of NMDA subtypes also participate, albeit to a lesser extent, to THC-induced ERK activation in the striatum, as shown after injection of selective antagonists (raclopride and MK801, respectively). Furthermore, THC-induced phosphorylation of the transcription factor Elk-1, and up-regulation of zif268 mRNA expression are blocked by SL327, a specific inhibitor of MAPK/ERK kinase (MEK), the upstream kinase of ERK, as well as SCH 23390. Finally, using the place-preference paradigm, we show that ERK inhibition blocks THC-induced rewarding properties. Altogether, our data strongly support that ERK activation in the striatum is critically involved in long-term neuronal adaptive responses underlying THC-induced long-term behaviours.</abstract><cop>France</cop><pmid>11553284</pmid><doi>10.1046/j.0953-816x.2001.01652.x</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-816X |
ispartof | The European journal of neuroscience, 2001-07, Vol.14 (2), p.342-352 |
issn | 0953-816X 1460-9568 |
language | eng |
recordid | cdi_proquest_miscellaneous_71166548 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Animals Behavior, Animal - drug effects Behavior, Animal - physiology Benzazepines - pharmacology Conditioning (Psychology) - drug effects Conditioning (Psychology) - physiology Dizocilpine Maleate - pharmacology DNA-Binding Proteins - genetics Dopamine - metabolism Dopamine Antagonists - pharmacology Dronabinol - pharmacology Early Growth Response Protein 1 ets-Domain Protein Elk-1 Excitatory Amino Acid Antagonists - pharmacology Immediate-Early Proteins Male Mice Mitogen-Activated Protein Kinases - drug effects Mitogen-Activated Protein Kinases - metabolism Neostriatum - cytology Neostriatum - drug effects Neostriatum - enzymology Neurons - cytology Neurons - drug effects Neurons - enzymology Nucleus Accumbens - cytology Nucleus Accumbens - drug effects Nucleus Accumbens - enzymology Pharmacokinetics Phosphorylation - drug effects Proto-Oncogene Proteins - drug effects Proto-Oncogene Proteins - metabolism Receptors, Cannabinoid Receptors, Dopamine D1 - antagonists & inhibitors Receptors, Dopamine D1 - metabolism Receptors, Drug - drug effects Receptors, Drug - metabolism Receptors, Glutamate - drug effects Receptors, Glutamate - metabolism Reward RNA, Messenger - metabolism Synaptic Transmission - drug effects Synaptic Transmission - physiology Transcription Factors - genetics Transcription, Genetic - drug effects Transcription, Genetic - physiology |
title | Delta 9-tetrahydrocannabinol-induced MAPK/ERK and Elk-1 activation in vivo depends on dopaminergic transmission |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T10%3A10%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Delta%209-tetrahydrocannabinol-induced%20MAPK/ERK%20and%20Elk-1%20activation%20in%20vivo%20depends%20on%20dopaminergic%20transmission&rft.jtitle=The%20European%20journal%20of%20neuroscience&rft.au=Valjent,%20E&rft.date=2001-07&rft.volume=14&rft.issue=2&rft.spage=342&rft.epage=352&rft.pages=342-352&rft.issn=0953-816X&rft.eissn=1460-9568&rft_id=info:doi/10.1046/j.0953-816x.2001.01652.x&rft_dat=%3Cproquest_pubme%3E1808644369%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808644369&rft_id=info:pmid/11553284&rfr_iscdi=true |