Delta 9-tetrahydrocannabinol-induced MAPK/ERK and Elk-1 activation in vivo depends on dopaminergic transmission

It is now well established that central effects of Delta 9-tetrahydrocannabinol (THC), the main psychoactive component of marijuana, are mediated by CB1 cannabinoid receptors. However, intraneuronal signalling pathways activated in vivo by THC remain poorly understood. We show that acute administrat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European journal of neuroscience 2001-07, Vol.14 (2), p.342-352
Hauptverfasser: Valjent, E, Pagès, C, Rogard, M, Besson, M J, Maldonado, R, Caboche, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 352
container_issue 2
container_start_page 342
container_title The European journal of neuroscience
container_volume 14
creator Valjent, E
Pagès, C
Rogard, M
Besson, M J
Maldonado, R
Caboche, J
description It is now well established that central effects of Delta 9-tetrahydrocannabinol (THC), the main psychoactive component of marijuana, are mediated by CB1 cannabinoid receptors. However, intraneuronal signalling pathways activated in vivo by THC remain poorly understood. We show that acute administration of THC induces a progressive and transient activation (i.e. phosphorylation) of the mitogen activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) in the dorsal striatum and the nucleus accumbens (NA). This activation, corresponding to both neuronal cell bodies and the surrounding neuropil, is totally inhibited by the selective antagonist of CB1 cannabinoid receptors, SR 141716A. However, blockade of dopaminergic (DA) D1 receptors by administration of SCH 23390, prior to THC, totally prevents ERK activation in the striatum, thus demonstrating a critical involvement of DA systems in THC-induced ERK activation. DA-D2 and glutamate receptors of NMDA subtypes also participate, albeit to a lesser extent, to THC-induced ERK activation in the striatum, as shown after injection of selective antagonists (raclopride and MK801, respectively). Furthermore, THC-induced phosphorylation of the transcription factor Elk-1, and up-regulation of zif268 mRNA expression are blocked by SL327, a specific inhibitor of MAPK/ERK kinase (MEK), the upstream kinase of ERK, as well as SCH 23390. Finally, using the place-preference paradigm, we show that ERK inhibition blocks THC-induced rewarding properties. Altogether, our data strongly support that ERK activation in the striatum is critically involved in long-term neuronal adaptive responses underlying THC-induced long-term behaviours.
doi_str_mv 10.1046/j.0953-816x.2001.01652.x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_71166548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808644369</sourcerecordid><originalsourceid>FETCH-LOGICAL-p172t-97975ec51a3de753d221f9be03434fc06c009379cbef47e1288431445c5f15183</originalsourceid><addsrcrecordid>eNp90F1LwzAUBuAgipvTvyC5Em_a5TQfbS7HnB9MUUTBu5EmqWa2aW26sf17O9xuvTpweHh5eRHCQGIgTIyXMZGcRhmITZwQAjEBwZN4c4SGwASJJBfZMRoe0McAnYWwJIRkgvFTNADgnCYZG6L6xpadwjLqbNeqr61pa628V7nzdRk5b1baGvw0eZmPZ69zrLzBs_I7Aqx059aqc7XHzuO1W9fY2MZ6E3D_MnWjKudt--k07oN9qFwIPT5HJ4Uqg73Y3xF6v529Te-jx-e7h-nkMWogTbpIpjLlVnNQ1NiUU5MkUMjcEsooKzQRmhBJU6lzW7DUQpJljAJjXPMCOGR0hK7-cpu2_lnZ0C36AtqWpfK2XoVFCiAEZzt4_S-EbDcao0L29HJPV3llzaJpXaXa7eKwJv0FmDR4SQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808644369</pqid></control><display><type>article</type><title>Delta 9-tetrahydrocannabinol-induced MAPK/ERK and Elk-1 activation in vivo depends on dopaminergic transmission</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Valjent, E ; Pagès, C ; Rogard, M ; Besson, M J ; Maldonado, R ; Caboche, J</creator><creatorcontrib>Valjent, E ; Pagès, C ; Rogard, M ; Besson, M J ; Maldonado, R ; Caboche, J</creatorcontrib><description>It is now well established that central effects of Delta 9-tetrahydrocannabinol (THC), the main psychoactive component of marijuana, are mediated by CB1 cannabinoid receptors. However, intraneuronal signalling pathways activated in vivo by THC remain poorly understood. We show that acute administration of THC induces a progressive and transient activation (i.e. phosphorylation) of the mitogen activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) in the dorsal striatum and the nucleus accumbens (NA). This activation, corresponding to both neuronal cell bodies and the surrounding neuropil, is totally inhibited by the selective antagonist of CB1 cannabinoid receptors, SR 141716A. However, blockade of dopaminergic (DA) D1 receptors by administration of SCH 23390, prior to THC, totally prevents ERK activation in the striatum, thus demonstrating a critical involvement of DA systems in THC-induced ERK activation. DA-D2 and glutamate receptors of NMDA subtypes also participate, albeit to a lesser extent, to THC-induced ERK activation in the striatum, as shown after injection of selective antagonists (raclopride and MK801, respectively). Furthermore, THC-induced phosphorylation of the transcription factor Elk-1, and up-regulation of zif268 mRNA expression are blocked by SL327, a specific inhibitor of MAPK/ERK kinase (MEK), the upstream kinase of ERK, as well as SCH 23390. Finally, using the place-preference paradigm, we show that ERK inhibition blocks THC-induced rewarding properties. Altogether, our data strongly support that ERK activation in the striatum is critically involved in long-term neuronal adaptive responses underlying THC-induced long-term behaviours.</description><identifier>ISSN: 0953-816X</identifier><identifier>EISSN: 1460-9568</identifier><identifier>DOI: 10.1046/j.0953-816x.2001.01652.x</identifier><identifier>PMID: 11553284</identifier><language>eng</language><publisher>France</publisher><subject>Animals ; Behavior, Animal - drug effects ; Behavior, Animal - physiology ; Benzazepines - pharmacology ; Conditioning (Psychology) - drug effects ; Conditioning (Psychology) - physiology ; Dizocilpine Maleate - pharmacology ; DNA-Binding Proteins - genetics ; Dopamine - metabolism ; Dopamine Antagonists - pharmacology ; Dronabinol - pharmacology ; Early Growth Response Protein 1 ; ets-Domain Protein Elk-1 ; Excitatory Amino Acid Antagonists - pharmacology ; Immediate-Early Proteins ; Male ; Mice ; Mitogen-Activated Protein Kinases - drug effects ; Mitogen-Activated Protein Kinases - metabolism ; Neostriatum - cytology ; Neostriatum - drug effects ; Neostriatum - enzymology ; Neurons - cytology ; Neurons - drug effects ; Neurons - enzymology ; Nucleus Accumbens - cytology ; Nucleus Accumbens - drug effects ; Nucleus Accumbens - enzymology ; Pharmacokinetics ; Phosphorylation - drug effects ; Proto-Oncogene Proteins - drug effects ; Proto-Oncogene Proteins - metabolism ; Receptors, Cannabinoid ; Receptors, Dopamine D1 - antagonists &amp; inhibitors ; Receptors, Dopamine D1 - metabolism ; Receptors, Drug - drug effects ; Receptors, Drug - metabolism ; Receptors, Glutamate - drug effects ; Receptors, Glutamate - metabolism ; Reward ; RNA, Messenger - metabolism ; Synaptic Transmission - drug effects ; Synaptic Transmission - physiology ; Transcription Factors - genetics ; Transcription, Genetic - drug effects ; Transcription, Genetic - physiology</subject><ispartof>The European journal of neuroscience, 2001-07, Vol.14 (2), p.342-352</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11553284$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Valjent, E</creatorcontrib><creatorcontrib>Pagès, C</creatorcontrib><creatorcontrib>Rogard, M</creatorcontrib><creatorcontrib>Besson, M J</creatorcontrib><creatorcontrib>Maldonado, R</creatorcontrib><creatorcontrib>Caboche, J</creatorcontrib><title>Delta 9-tetrahydrocannabinol-induced MAPK/ERK and Elk-1 activation in vivo depends on dopaminergic transmission</title><title>The European journal of neuroscience</title><addtitle>Eur J Neurosci</addtitle><description>It is now well established that central effects of Delta 9-tetrahydrocannabinol (THC), the main psychoactive component of marijuana, are mediated by CB1 cannabinoid receptors. However, intraneuronal signalling pathways activated in vivo by THC remain poorly understood. We show that acute administration of THC induces a progressive and transient activation (i.e. phosphorylation) of the mitogen activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) in the dorsal striatum and the nucleus accumbens (NA). This activation, corresponding to both neuronal cell bodies and the surrounding neuropil, is totally inhibited by the selective antagonist of CB1 cannabinoid receptors, SR 141716A. However, blockade of dopaminergic (DA) D1 receptors by administration of SCH 23390, prior to THC, totally prevents ERK activation in the striatum, thus demonstrating a critical involvement of DA systems in THC-induced ERK activation. DA-D2 and glutamate receptors of NMDA subtypes also participate, albeit to a lesser extent, to THC-induced ERK activation in the striatum, as shown after injection of selective antagonists (raclopride and MK801, respectively). Furthermore, THC-induced phosphorylation of the transcription factor Elk-1, and up-regulation of zif268 mRNA expression are blocked by SL327, a specific inhibitor of MAPK/ERK kinase (MEK), the upstream kinase of ERK, as well as SCH 23390. Finally, using the place-preference paradigm, we show that ERK inhibition blocks THC-induced rewarding properties. Altogether, our data strongly support that ERK activation in the striatum is critically involved in long-term neuronal adaptive responses underlying THC-induced long-term behaviours.</description><subject>Animals</subject><subject>Behavior, Animal - drug effects</subject><subject>Behavior, Animal - physiology</subject><subject>Benzazepines - pharmacology</subject><subject>Conditioning (Psychology) - drug effects</subject><subject>Conditioning (Psychology) - physiology</subject><subject>Dizocilpine Maleate - pharmacology</subject><subject>DNA-Binding Proteins - genetics</subject><subject>Dopamine - metabolism</subject><subject>Dopamine Antagonists - pharmacology</subject><subject>Dronabinol - pharmacology</subject><subject>Early Growth Response Protein 1</subject><subject>ets-Domain Protein Elk-1</subject><subject>Excitatory Amino Acid Antagonists - pharmacology</subject><subject>Immediate-Early Proteins</subject><subject>Male</subject><subject>Mice</subject><subject>Mitogen-Activated Protein Kinases - drug effects</subject><subject>Mitogen-Activated Protein Kinases - metabolism</subject><subject>Neostriatum - cytology</subject><subject>Neostriatum - drug effects</subject><subject>Neostriatum - enzymology</subject><subject>Neurons - cytology</subject><subject>Neurons - drug effects</subject><subject>Neurons - enzymology</subject><subject>Nucleus Accumbens - cytology</subject><subject>Nucleus Accumbens - drug effects</subject><subject>Nucleus Accumbens - enzymology</subject><subject>Pharmacokinetics</subject><subject>Phosphorylation - drug effects</subject><subject>Proto-Oncogene Proteins - drug effects</subject><subject>Proto-Oncogene Proteins - metabolism</subject><subject>Receptors, Cannabinoid</subject><subject>Receptors, Dopamine D1 - antagonists &amp; inhibitors</subject><subject>Receptors, Dopamine D1 - metabolism</subject><subject>Receptors, Drug - drug effects</subject><subject>Receptors, Drug - metabolism</subject><subject>Receptors, Glutamate - drug effects</subject><subject>Receptors, Glutamate - metabolism</subject><subject>Reward</subject><subject>RNA, Messenger - metabolism</subject><subject>Synaptic Transmission - drug effects</subject><subject>Synaptic Transmission - physiology</subject><subject>Transcription Factors - genetics</subject><subject>Transcription, Genetic - drug effects</subject><subject>Transcription, Genetic - physiology</subject><issn>0953-816X</issn><issn>1460-9568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90F1LwzAUBuAgipvTvyC5Em_a5TQfbS7HnB9MUUTBu5EmqWa2aW26sf17O9xuvTpweHh5eRHCQGIgTIyXMZGcRhmITZwQAjEBwZN4c4SGwASJJBfZMRoe0McAnYWwJIRkgvFTNADgnCYZG6L6xpadwjLqbNeqr61pa628V7nzdRk5b1baGvw0eZmPZ69zrLzBs_I7Aqx059aqc7XHzuO1W9fY2MZ6E3D_MnWjKudt--k07oN9qFwIPT5HJ4Uqg73Y3xF6v529Te-jx-e7h-nkMWogTbpIpjLlVnNQ1NiUU5MkUMjcEsooKzQRmhBJU6lzW7DUQpJljAJjXPMCOGR0hK7-cpu2_lnZ0C36AtqWpfK2XoVFCiAEZzt4_S-EbDcao0L29HJPV3llzaJpXaXa7eKwJv0FmDR4SQ</recordid><startdate>200107</startdate><enddate>200107</enddate><creator>Valjent, E</creator><creator>Pagès, C</creator><creator>Rogard, M</creator><creator>Besson, M J</creator><creator>Maldonado, R</creator><creator>Caboche, J</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>200107</creationdate><title>Delta 9-tetrahydrocannabinol-induced MAPK/ERK and Elk-1 activation in vivo depends on dopaminergic transmission</title><author>Valjent, E ; Pagès, C ; Rogard, M ; Besson, M J ; Maldonado, R ; Caboche, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p172t-97975ec51a3de753d221f9be03434fc06c009379cbef47e1288431445c5f15183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Animals</topic><topic>Behavior, Animal - drug effects</topic><topic>Behavior, Animal - physiology</topic><topic>Benzazepines - pharmacology</topic><topic>Conditioning (Psychology) - drug effects</topic><topic>Conditioning (Psychology) - physiology</topic><topic>Dizocilpine Maleate - pharmacology</topic><topic>DNA-Binding Proteins - genetics</topic><topic>Dopamine - metabolism</topic><topic>Dopamine Antagonists - pharmacology</topic><topic>Dronabinol - pharmacology</topic><topic>Early Growth Response Protein 1</topic><topic>ets-Domain Protein Elk-1</topic><topic>Excitatory Amino Acid Antagonists - pharmacology</topic><topic>Immediate-Early Proteins</topic><topic>Male</topic><topic>Mice</topic><topic>Mitogen-Activated Protein Kinases - drug effects</topic><topic>Mitogen-Activated Protein Kinases - metabolism</topic><topic>Neostriatum - cytology</topic><topic>Neostriatum - drug effects</topic><topic>Neostriatum - enzymology</topic><topic>Neurons - cytology</topic><topic>Neurons - drug effects</topic><topic>Neurons - enzymology</topic><topic>Nucleus Accumbens - cytology</topic><topic>Nucleus Accumbens - drug effects</topic><topic>Nucleus Accumbens - enzymology</topic><topic>Pharmacokinetics</topic><topic>Phosphorylation - drug effects</topic><topic>Proto-Oncogene Proteins - drug effects</topic><topic>Proto-Oncogene Proteins - metabolism</topic><topic>Receptors, Cannabinoid</topic><topic>Receptors, Dopamine D1 - antagonists &amp; inhibitors</topic><topic>Receptors, Dopamine D1 - metabolism</topic><topic>Receptors, Drug - drug effects</topic><topic>Receptors, Drug - metabolism</topic><topic>Receptors, Glutamate - drug effects</topic><topic>Receptors, Glutamate - metabolism</topic><topic>Reward</topic><topic>RNA, Messenger - metabolism</topic><topic>Synaptic Transmission - drug effects</topic><topic>Synaptic Transmission - physiology</topic><topic>Transcription Factors - genetics</topic><topic>Transcription, Genetic - drug effects</topic><topic>Transcription, Genetic - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valjent, E</creatorcontrib><creatorcontrib>Pagès, C</creatorcontrib><creatorcontrib>Rogard, M</creatorcontrib><creatorcontrib>Besson, M J</creatorcontrib><creatorcontrib>Maldonado, R</creatorcontrib><creatorcontrib>Caboche, J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The European journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valjent, E</au><au>Pagès, C</au><au>Rogard, M</au><au>Besson, M J</au><au>Maldonado, R</au><au>Caboche, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Delta 9-tetrahydrocannabinol-induced MAPK/ERK and Elk-1 activation in vivo depends on dopaminergic transmission</atitle><jtitle>The European journal of neuroscience</jtitle><addtitle>Eur J Neurosci</addtitle><date>2001-07</date><risdate>2001</risdate><volume>14</volume><issue>2</issue><spage>342</spage><epage>352</epage><pages>342-352</pages><issn>0953-816X</issn><eissn>1460-9568</eissn><abstract>It is now well established that central effects of Delta 9-tetrahydrocannabinol (THC), the main psychoactive component of marijuana, are mediated by CB1 cannabinoid receptors. However, intraneuronal signalling pathways activated in vivo by THC remain poorly understood. We show that acute administration of THC induces a progressive and transient activation (i.e. phosphorylation) of the mitogen activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) in the dorsal striatum and the nucleus accumbens (NA). This activation, corresponding to both neuronal cell bodies and the surrounding neuropil, is totally inhibited by the selective antagonist of CB1 cannabinoid receptors, SR 141716A. However, blockade of dopaminergic (DA) D1 receptors by administration of SCH 23390, prior to THC, totally prevents ERK activation in the striatum, thus demonstrating a critical involvement of DA systems in THC-induced ERK activation. DA-D2 and glutamate receptors of NMDA subtypes also participate, albeit to a lesser extent, to THC-induced ERK activation in the striatum, as shown after injection of selective antagonists (raclopride and MK801, respectively). Furthermore, THC-induced phosphorylation of the transcription factor Elk-1, and up-regulation of zif268 mRNA expression are blocked by SL327, a specific inhibitor of MAPK/ERK kinase (MEK), the upstream kinase of ERK, as well as SCH 23390. Finally, using the place-preference paradigm, we show that ERK inhibition blocks THC-induced rewarding properties. Altogether, our data strongly support that ERK activation in the striatum is critically involved in long-term neuronal adaptive responses underlying THC-induced long-term behaviours.</abstract><cop>France</cop><pmid>11553284</pmid><doi>10.1046/j.0953-816x.2001.01652.x</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0953-816X
ispartof The European journal of neuroscience, 2001-07, Vol.14 (2), p.342-352
issn 0953-816X
1460-9568
language eng
recordid cdi_proquest_miscellaneous_71166548
source MEDLINE; Wiley Online Library All Journals
subjects Animals
Behavior, Animal - drug effects
Behavior, Animal - physiology
Benzazepines - pharmacology
Conditioning (Psychology) - drug effects
Conditioning (Psychology) - physiology
Dizocilpine Maleate - pharmacology
DNA-Binding Proteins - genetics
Dopamine - metabolism
Dopamine Antagonists - pharmacology
Dronabinol - pharmacology
Early Growth Response Protein 1
ets-Domain Protein Elk-1
Excitatory Amino Acid Antagonists - pharmacology
Immediate-Early Proteins
Male
Mice
Mitogen-Activated Protein Kinases - drug effects
Mitogen-Activated Protein Kinases - metabolism
Neostriatum - cytology
Neostriatum - drug effects
Neostriatum - enzymology
Neurons - cytology
Neurons - drug effects
Neurons - enzymology
Nucleus Accumbens - cytology
Nucleus Accumbens - drug effects
Nucleus Accumbens - enzymology
Pharmacokinetics
Phosphorylation - drug effects
Proto-Oncogene Proteins - drug effects
Proto-Oncogene Proteins - metabolism
Receptors, Cannabinoid
Receptors, Dopamine D1 - antagonists & inhibitors
Receptors, Dopamine D1 - metabolism
Receptors, Drug - drug effects
Receptors, Drug - metabolism
Receptors, Glutamate - drug effects
Receptors, Glutamate - metabolism
Reward
RNA, Messenger - metabolism
Synaptic Transmission - drug effects
Synaptic Transmission - physiology
Transcription Factors - genetics
Transcription, Genetic - drug effects
Transcription, Genetic - physiology
title Delta 9-tetrahydrocannabinol-induced MAPK/ERK and Elk-1 activation in vivo depends on dopaminergic transmission
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T10%3A10%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Delta%209-tetrahydrocannabinol-induced%20MAPK/ERK%20and%20Elk-1%20activation%20in%20vivo%20depends%20on%20dopaminergic%20transmission&rft.jtitle=The%20European%20journal%20of%20neuroscience&rft.au=Valjent,%20E&rft.date=2001-07&rft.volume=14&rft.issue=2&rft.spage=342&rft.epage=352&rft.pages=342-352&rft.issn=0953-816X&rft.eissn=1460-9568&rft_id=info:doi/10.1046/j.0953-816x.2001.01652.x&rft_dat=%3Cproquest_pubme%3E1808644369%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808644369&rft_id=info:pmid/11553284&rfr_iscdi=true