Plasticity in respiratory motor control: intermittent hypoxia and hypercapnia activate opposing serotonergic and noradrenergic modulatory systems

Experimental results consistently show that the respiratory control system is plastic, such that environmental factors and experience can modify its performance. Such plasticity may represent basic neurobiological principles of learning and memory, whereby intermittent sensory stimulation produces l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Comparative Biochemistry and Physiology, Part A Part A, 2001-09, Vol.130 (2), p.207-218
Hauptverfasser: Kinkead, Richard, Bach, Karen B., Johnson, Stephen M., Hodgeman, Bradley A., Mitchell, Gordon S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 218
container_issue 2
container_start_page 207
container_title Comparative Biochemistry and Physiology, Part A
container_volume 130
creator Kinkead, Richard
Bach, Karen B.
Johnson, Stephen M.
Hodgeman, Bradley A.
Mitchell, Gordon S.
description Experimental results consistently show that the respiratory control system is plastic, such that environmental factors and experience can modify its performance. Such plasticity may represent basic neurobiological principles of learning and memory, whereby intermittent sensory stimulation produces long-term alterations (i.e. facilitation or depression) in synaptic transmission depending on the timing and intensity of the stimulation. In this review, we propose that intermittent chemosensory stimulation produces long-term changes in respiratory motor output via specific neuromodulatory systems. This concept is based on recent data suggesting that intermittent hypoxia produces a net long-term facilitation of respiratory output via the serotonergic system, whereas intermittent hypercapnia produces a net long-term depression by a mechanism associated with the noradrenergic system. There is suggestive evidence that, although both respiratory stimuli activate both modulatory systems, the balance is different. Thus, these opposing modulatory influences on respiratory motor control may provide a ‘push–pull’ system, preventing unchecked and inappropriate fluctuations in ventilatory drive.
doi_str_mv 10.1016/S1095-6433(01)00393-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71149441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1095643301003932</els_id><sourcerecordid>18383100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-d412254a06e743b45d5639d272da02d5b1641fb9e637614501c17fbf4d1740f43</originalsourceid><addsrcrecordid>eNqFkctu1TAQQK0KRNsLn1CUFWoXAY8fyU03VVXxkiqBBKwtx54UV4md2r4V-Qz-GN9HxbLezHh8ZkbyIeQM6Hug0Hz4AbSTdSM4P6dwQSnveM2OyAlIDnWpshclf0KOyWlK97QcAeIVOQaQQtBmfUL-fh91ys64vFTOVxHT7KLOIS7VFEqoTPA5hvGyvGaMk8sZfa5-L3P443Slvd3mGI2e_fZusnvUGaswzyE5f1cljGWOx3jnzA73IWob8VCZgt2M-31pSRmn9Jq8HPSY8M0hrsivTx9_3nypb799_npzfVsb3rFcWwGMSaFpg63gvZBWNryzrGVWU2ZlD42Aoe-w4W0DQlIw0A79ICy0gg6Cr8i7_dw5hocNpqwmlwyOo_YYNkm1AKITAp4FYc3XHIqBFZF70MSQUsRBzdFNOi4KqNpKUztpamtEUVA7aYqVvreHBZt-Qvu_62CpAFd7AMt_PDqMKhmH3qB1EU1WNrhnVvwDQPqqgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18383100</pqid></control><display><type>article</type><title>Plasticity in respiratory motor control: intermittent hypoxia and hypercapnia activate opposing serotonergic and noradrenergic modulatory systems</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kinkead, Richard ; Bach, Karen B. ; Johnson, Stephen M. ; Hodgeman, Bradley A. ; Mitchell, Gordon S.</creator><creatorcontrib>Kinkead, Richard ; Bach, Karen B. ; Johnson, Stephen M. ; Hodgeman, Bradley A. ; Mitchell, Gordon S.</creatorcontrib><description>Experimental results consistently show that the respiratory control system is plastic, such that environmental factors and experience can modify its performance. Such plasticity may represent basic neurobiological principles of learning and memory, whereby intermittent sensory stimulation produces long-term alterations (i.e. facilitation or depression) in synaptic transmission depending on the timing and intensity of the stimulation. In this review, we propose that intermittent chemosensory stimulation produces long-term changes in respiratory motor output via specific neuromodulatory systems. This concept is based on recent data suggesting that intermittent hypoxia produces a net long-term facilitation of respiratory output via the serotonergic system, whereas intermittent hypercapnia produces a net long-term depression by a mechanism associated with the noradrenergic system. There is suggestive evidence that, although both respiratory stimuli activate both modulatory systems, the balance is different. Thus, these opposing modulatory influences on respiratory motor control may provide a ‘push–pull’ system, preventing unchecked and inappropriate fluctuations in ventilatory drive.</description><identifier>ISSN: 1095-6433</identifier><identifier>EISSN: 1531-4332</identifier><identifier>DOI: 10.1016/S1095-6433(01)00393-2</identifier><identifier>PMID: 11544068</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Control of breathing ; Hypercapnia - physiopathology ; Hypoxia - physiopathology ; Long-term depression ; Long-term facilitation ; Neuromodulation ; Neuronal Plasticity - physiology ; Neurotransmitter Agents - physiology ; Norepinephrine - physiology ; Post-hypoxia frequency decline ; Respiratory Muscles - innervation ; Serotonin - physiology</subject><ispartof>Comparative Biochemistry and Physiology, Part A, 2001-09, Vol.130 (2), p.207-218</ispartof><rights>2001 Elsevier Science Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-d412254a06e743b45d5639d272da02d5b1641fb9e637614501c17fbf4d1740f43</citedby><cites>FETCH-LOGICAL-c392t-d412254a06e743b45d5639d272da02d5b1641fb9e637614501c17fbf4d1740f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S1095-6433(01)00393-2$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>313,314,780,784,792,3550,27922,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11544068$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kinkead, Richard</creatorcontrib><creatorcontrib>Bach, Karen B.</creatorcontrib><creatorcontrib>Johnson, Stephen M.</creatorcontrib><creatorcontrib>Hodgeman, Bradley A.</creatorcontrib><creatorcontrib>Mitchell, Gordon S.</creatorcontrib><title>Plasticity in respiratory motor control: intermittent hypoxia and hypercapnia activate opposing serotonergic and noradrenergic modulatory systems</title><title>Comparative Biochemistry and Physiology, Part A</title><addtitle>Comp Biochem Physiol A Mol Integr Physiol</addtitle><description>Experimental results consistently show that the respiratory control system is plastic, such that environmental factors and experience can modify its performance. Such plasticity may represent basic neurobiological principles of learning and memory, whereby intermittent sensory stimulation produces long-term alterations (i.e. facilitation or depression) in synaptic transmission depending on the timing and intensity of the stimulation. In this review, we propose that intermittent chemosensory stimulation produces long-term changes in respiratory motor output via specific neuromodulatory systems. This concept is based on recent data suggesting that intermittent hypoxia produces a net long-term facilitation of respiratory output via the serotonergic system, whereas intermittent hypercapnia produces a net long-term depression by a mechanism associated with the noradrenergic system. There is suggestive evidence that, although both respiratory stimuli activate both modulatory systems, the balance is different. Thus, these opposing modulatory influences on respiratory motor control may provide a ‘push–pull’ system, preventing unchecked and inappropriate fluctuations in ventilatory drive.</description><subject>Animals</subject><subject>Control of breathing</subject><subject>Hypercapnia - physiopathology</subject><subject>Hypoxia - physiopathology</subject><subject>Long-term depression</subject><subject>Long-term facilitation</subject><subject>Neuromodulation</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurotransmitter Agents - physiology</subject><subject>Norepinephrine - physiology</subject><subject>Post-hypoxia frequency decline</subject><subject>Respiratory Muscles - innervation</subject><subject>Serotonin - physiology</subject><issn>1095-6433</issn><issn>1531-4332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctu1TAQQK0KRNsLn1CUFWoXAY8fyU03VVXxkiqBBKwtx54UV4md2r4V-Qz-GN9HxbLezHh8ZkbyIeQM6Hug0Hz4AbSTdSM4P6dwQSnveM2OyAlIDnWpshclf0KOyWlK97QcAeIVOQaQQtBmfUL-fh91ys64vFTOVxHT7KLOIS7VFEqoTPA5hvGyvGaMk8sZfa5-L3P443Slvd3mGI2e_fZusnvUGaswzyE5f1cljGWOx3jnzA73IWob8VCZgt2M-31pSRmn9Jq8HPSY8M0hrsivTx9_3nypb799_npzfVsb3rFcWwGMSaFpg63gvZBWNryzrGVWU2ZlD42Aoe-w4W0DQlIw0A79ICy0gg6Cr8i7_dw5hocNpqwmlwyOo_YYNkm1AKITAp4FYc3XHIqBFZF70MSQUsRBzdFNOi4KqNpKUztpamtEUVA7aYqVvreHBZt-Qvu_62CpAFd7AMt_PDqMKhmH3qB1EU1WNrhnVvwDQPqqgA</recordid><startdate>20010901</startdate><enddate>20010901</enddate><creator>Kinkead, Richard</creator><creator>Bach, Karen B.</creator><creator>Johnson, Stephen M.</creator><creator>Hodgeman, Bradley A.</creator><creator>Mitchell, Gordon S.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20010901</creationdate><title>Plasticity in respiratory motor control: intermittent hypoxia and hypercapnia activate opposing serotonergic and noradrenergic modulatory systems</title><author>Kinkead, Richard ; Bach, Karen B. ; Johnson, Stephen M. ; Hodgeman, Bradley A. ; Mitchell, Gordon S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-d412254a06e743b45d5639d272da02d5b1641fb9e637614501c17fbf4d1740f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Animals</topic><topic>Control of breathing</topic><topic>Hypercapnia - physiopathology</topic><topic>Hypoxia - physiopathology</topic><topic>Long-term depression</topic><topic>Long-term facilitation</topic><topic>Neuromodulation</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurotransmitter Agents - physiology</topic><topic>Norepinephrine - physiology</topic><topic>Post-hypoxia frequency decline</topic><topic>Respiratory Muscles - innervation</topic><topic>Serotonin - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kinkead, Richard</creatorcontrib><creatorcontrib>Bach, Karen B.</creatorcontrib><creatorcontrib>Johnson, Stephen M.</creatorcontrib><creatorcontrib>Hodgeman, Bradley A.</creatorcontrib><creatorcontrib>Mitchell, Gordon S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Comparative Biochemistry and Physiology, Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kinkead, Richard</au><au>Bach, Karen B.</au><au>Johnson, Stephen M.</au><au>Hodgeman, Bradley A.</au><au>Mitchell, Gordon S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasticity in respiratory motor control: intermittent hypoxia and hypercapnia activate opposing serotonergic and noradrenergic modulatory systems</atitle><jtitle>Comparative Biochemistry and Physiology, Part A</jtitle><addtitle>Comp Biochem Physiol A Mol Integr Physiol</addtitle><date>2001-09-01</date><risdate>2001</risdate><volume>130</volume><issue>2</issue><spage>207</spage><epage>218</epage><pages>207-218</pages><issn>1095-6433</issn><eissn>1531-4332</eissn><abstract>Experimental results consistently show that the respiratory control system is plastic, such that environmental factors and experience can modify its performance. Such plasticity may represent basic neurobiological principles of learning and memory, whereby intermittent sensory stimulation produces long-term alterations (i.e. facilitation or depression) in synaptic transmission depending on the timing and intensity of the stimulation. In this review, we propose that intermittent chemosensory stimulation produces long-term changes in respiratory motor output via specific neuromodulatory systems. This concept is based on recent data suggesting that intermittent hypoxia produces a net long-term facilitation of respiratory output via the serotonergic system, whereas intermittent hypercapnia produces a net long-term depression by a mechanism associated with the noradrenergic system. There is suggestive evidence that, although both respiratory stimuli activate both modulatory systems, the balance is different. Thus, these opposing modulatory influences on respiratory motor control may provide a ‘push–pull’ system, preventing unchecked and inappropriate fluctuations in ventilatory drive.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>11544068</pmid><doi>10.1016/S1095-6433(01)00393-2</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1095-6433
ispartof Comparative Biochemistry and Physiology, Part A, 2001-09, Vol.130 (2), p.207-218
issn 1095-6433
1531-4332
language eng
recordid cdi_proquest_miscellaneous_71149441
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Animals
Control of breathing
Hypercapnia - physiopathology
Hypoxia - physiopathology
Long-term depression
Long-term facilitation
Neuromodulation
Neuronal Plasticity - physiology
Neurotransmitter Agents - physiology
Norepinephrine - physiology
Post-hypoxia frequency decline
Respiratory Muscles - innervation
Serotonin - physiology
title Plasticity in respiratory motor control: intermittent hypoxia and hypercapnia activate opposing serotonergic and noradrenergic modulatory systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A33%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasticity%20in%20respiratory%20motor%20control:%20intermittent%20hypoxia%20and%20hypercapnia%20activate%20opposing%20serotonergic%20and%20noradrenergic%20modulatory%20systems&rft.jtitle=Comparative%20Biochemistry%20and%20Physiology,%20Part%20A&rft.au=Kinkead,%20Richard&rft.date=2001-09-01&rft.volume=130&rft.issue=2&rft.spage=207&rft.epage=218&rft.pages=207-218&rft.issn=1095-6433&rft.eissn=1531-4332&rft_id=info:doi/10.1016/S1095-6433(01)00393-2&rft_dat=%3Cproquest_cross%3E18383100%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18383100&rft_id=info:pmid/11544068&rft_els_id=S1095643301003932&rfr_iscdi=true