Plasticity in respiratory motor control: intermittent hypoxia and hypercapnia activate opposing serotonergic and noradrenergic modulatory systems
Experimental results consistently show that the respiratory control system is plastic, such that environmental factors and experience can modify its performance. Such plasticity may represent basic neurobiological principles of learning and memory, whereby intermittent sensory stimulation produces l...
Gespeichert in:
Veröffentlicht in: | Comparative Biochemistry and Physiology, Part A Part A, 2001-09, Vol.130 (2), p.207-218 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 218 |
---|---|
container_issue | 2 |
container_start_page | 207 |
container_title | Comparative Biochemistry and Physiology, Part A |
container_volume | 130 |
creator | Kinkead, Richard Bach, Karen B. Johnson, Stephen M. Hodgeman, Bradley A. Mitchell, Gordon S. |
description | Experimental results consistently show that the respiratory control system is plastic, such that environmental factors and experience can modify its performance. Such plasticity may represent basic neurobiological principles of learning and memory, whereby intermittent sensory stimulation produces long-term alterations (i.e. facilitation or depression) in synaptic transmission depending on the timing and intensity of the stimulation. In this review, we propose that intermittent chemosensory stimulation produces long-term changes in respiratory motor output via specific neuromodulatory systems. This concept is based on recent data suggesting that intermittent hypoxia produces a net long-term facilitation of respiratory output via the serotonergic system, whereas intermittent hypercapnia produces a net long-term depression by a mechanism associated with the noradrenergic system. There is suggestive evidence that, although both respiratory stimuli activate both modulatory systems, the balance is different. Thus, these opposing modulatory influences on respiratory motor control may provide a ‘push–pull’ system, preventing unchecked and inappropriate fluctuations in ventilatory drive. |
doi_str_mv | 10.1016/S1095-6433(01)00393-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71149441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1095643301003932</els_id><sourcerecordid>18383100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-d412254a06e743b45d5639d272da02d5b1641fb9e637614501c17fbf4d1740f43</originalsourceid><addsrcrecordid>eNqFkctu1TAQQK0KRNsLn1CUFWoXAY8fyU03VVXxkiqBBKwtx54UV4md2r4V-Qz-GN9HxbLezHh8ZkbyIeQM6Hug0Hz4AbSTdSM4P6dwQSnveM2OyAlIDnWpshclf0KOyWlK97QcAeIVOQaQQtBmfUL-fh91ys64vFTOVxHT7KLOIS7VFEqoTPA5hvGyvGaMk8sZfa5-L3P443Slvd3mGI2e_fZusnvUGaswzyE5f1cljGWOx3jnzA73IWob8VCZgt2M-31pSRmn9Jq8HPSY8M0hrsivTx9_3nypb799_npzfVsb3rFcWwGMSaFpg63gvZBWNryzrGVWU2ZlD42Aoe-w4W0DQlIw0A79ICy0gg6Cr8i7_dw5hocNpqwmlwyOo_YYNkm1AKITAp4FYc3XHIqBFZF70MSQUsRBzdFNOi4KqNpKUztpamtEUVA7aYqVvreHBZt-Qvu_62CpAFd7AMt_PDqMKhmH3qB1EU1WNrhnVvwDQPqqgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18383100</pqid></control><display><type>article</type><title>Plasticity in respiratory motor control: intermittent hypoxia and hypercapnia activate opposing serotonergic and noradrenergic modulatory systems</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kinkead, Richard ; Bach, Karen B. ; Johnson, Stephen M. ; Hodgeman, Bradley A. ; Mitchell, Gordon S.</creator><creatorcontrib>Kinkead, Richard ; Bach, Karen B. ; Johnson, Stephen M. ; Hodgeman, Bradley A. ; Mitchell, Gordon S.</creatorcontrib><description>Experimental results consistently show that the respiratory control system is plastic, such that environmental factors and experience can modify its performance. Such plasticity may represent basic neurobiological principles of learning and memory, whereby intermittent sensory stimulation produces long-term alterations (i.e. facilitation or depression) in synaptic transmission depending on the timing and intensity of the stimulation. In this review, we propose that intermittent chemosensory stimulation produces long-term changes in respiratory motor output via specific neuromodulatory systems. This concept is based on recent data suggesting that intermittent hypoxia produces a net long-term facilitation of respiratory output via the serotonergic system, whereas intermittent hypercapnia produces a net long-term depression by a mechanism associated with the noradrenergic system. There is suggestive evidence that, although both respiratory stimuli activate both modulatory systems, the balance is different. Thus, these opposing modulatory influences on respiratory motor control may provide a ‘push–pull’ system, preventing unchecked and inappropriate fluctuations in ventilatory drive.</description><identifier>ISSN: 1095-6433</identifier><identifier>EISSN: 1531-4332</identifier><identifier>DOI: 10.1016/S1095-6433(01)00393-2</identifier><identifier>PMID: 11544068</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Control of breathing ; Hypercapnia - physiopathology ; Hypoxia - physiopathology ; Long-term depression ; Long-term facilitation ; Neuromodulation ; Neuronal Plasticity - physiology ; Neurotransmitter Agents - physiology ; Norepinephrine - physiology ; Post-hypoxia frequency decline ; Respiratory Muscles - innervation ; Serotonin - physiology</subject><ispartof>Comparative Biochemistry and Physiology, Part A, 2001-09, Vol.130 (2), p.207-218</ispartof><rights>2001 Elsevier Science Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-d412254a06e743b45d5639d272da02d5b1641fb9e637614501c17fbf4d1740f43</citedby><cites>FETCH-LOGICAL-c392t-d412254a06e743b45d5639d272da02d5b1641fb9e637614501c17fbf4d1740f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S1095-6433(01)00393-2$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>313,314,780,784,792,3550,27922,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11544068$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kinkead, Richard</creatorcontrib><creatorcontrib>Bach, Karen B.</creatorcontrib><creatorcontrib>Johnson, Stephen M.</creatorcontrib><creatorcontrib>Hodgeman, Bradley A.</creatorcontrib><creatorcontrib>Mitchell, Gordon S.</creatorcontrib><title>Plasticity in respiratory motor control: intermittent hypoxia and hypercapnia activate opposing serotonergic and noradrenergic modulatory systems</title><title>Comparative Biochemistry and Physiology, Part A</title><addtitle>Comp Biochem Physiol A Mol Integr Physiol</addtitle><description>Experimental results consistently show that the respiratory control system is plastic, such that environmental factors and experience can modify its performance. Such plasticity may represent basic neurobiological principles of learning and memory, whereby intermittent sensory stimulation produces long-term alterations (i.e. facilitation or depression) in synaptic transmission depending on the timing and intensity of the stimulation. In this review, we propose that intermittent chemosensory stimulation produces long-term changes in respiratory motor output via specific neuromodulatory systems. This concept is based on recent data suggesting that intermittent hypoxia produces a net long-term facilitation of respiratory output via the serotonergic system, whereas intermittent hypercapnia produces a net long-term depression by a mechanism associated with the noradrenergic system. There is suggestive evidence that, although both respiratory stimuli activate both modulatory systems, the balance is different. Thus, these opposing modulatory influences on respiratory motor control may provide a ‘push–pull’ system, preventing unchecked and inappropriate fluctuations in ventilatory drive.</description><subject>Animals</subject><subject>Control of breathing</subject><subject>Hypercapnia - physiopathology</subject><subject>Hypoxia - physiopathology</subject><subject>Long-term depression</subject><subject>Long-term facilitation</subject><subject>Neuromodulation</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurotransmitter Agents - physiology</subject><subject>Norepinephrine - physiology</subject><subject>Post-hypoxia frequency decline</subject><subject>Respiratory Muscles - innervation</subject><subject>Serotonin - physiology</subject><issn>1095-6433</issn><issn>1531-4332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctu1TAQQK0KRNsLn1CUFWoXAY8fyU03VVXxkiqBBKwtx54UV4md2r4V-Qz-GN9HxbLezHh8ZkbyIeQM6Hug0Hz4AbSTdSM4P6dwQSnveM2OyAlIDnWpshclf0KOyWlK97QcAeIVOQaQQtBmfUL-fh91ys64vFTOVxHT7KLOIS7VFEqoTPA5hvGyvGaMk8sZfa5-L3P443Slvd3mGI2e_fZusnvUGaswzyE5f1cljGWOx3jnzA73IWob8VCZgt2M-31pSRmn9Jq8HPSY8M0hrsivTx9_3nypb799_npzfVsb3rFcWwGMSaFpg63gvZBWNryzrGVWU2ZlD42Aoe-w4W0DQlIw0A79ICy0gg6Cr8i7_dw5hocNpqwmlwyOo_YYNkm1AKITAp4FYc3XHIqBFZF70MSQUsRBzdFNOi4KqNpKUztpamtEUVA7aYqVvreHBZt-Qvu_62CpAFd7AMt_PDqMKhmH3qB1EU1WNrhnVvwDQPqqgA</recordid><startdate>20010901</startdate><enddate>20010901</enddate><creator>Kinkead, Richard</creator><creator>Bach, Karen B.</creator><creator>Johnson, Stephen M.</creator><creator>Hodgeman, Bradley A.</creator><creator>Mitchell, Gordon S.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20010901</creationdate><title>Plasticity in respiratory motor control: intermittent hypoxia and hypercapnia activate opposing serotonergic and noradrenergic modulatory systems</title><author>Kinkead, Richard ; Bach, Karen B. ; Johnson, Stephen M. ; Hodgeman, Bradley A. ; Mitchell, Gordon S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-d412254a06e743b45d5639d272da02d5b1641fb9e637614501c17fbf4d1740f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Animals</topic><topic>Control of breathing</topic><topic>Hypercapnia - physiopathology</topic><topic>Hypoxia - physiopathology</topic><topic>Long-term depression</topic><topic>Long-term facilitation</topic><topic>Neuromodulation</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurotransmitter Agents - physiology</topic><topic>Norepinephrine - physiology</topic><topic>Post-hypoxia frequency decline</topic><topic>Respiratory Muscles - innervation</topic><topic>Serotonin - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kinkead, Richard</creatorcontrib><creatorcontrib>Bach, Karen B.</creatorcontrib><creatorcontrib>Johnson, Stephen M.</creatorcontrib><creatorcontrib>Hodgeman, Bradley A.</creatorcontrib><creatorcontrib>Mitchell, Gordon S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Comparative Biochemistry and Physiology, Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kinkead, Richard</au><au>Bach, Karen B.</au><au>Johnson, Stephen M.</au><au>Hodgeman, Bradley A.</au><au>Mitchell, Gordon S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasticity in respiratory motor control: intermittent hypoxia and hypercapnia activate opposing serotonergic and noradrenergic modulatory systems</atitle><jtitle>Comparative Biochemistry and Physiology, Part A</jtitle><addtitle>Comp Biochem Physiol A Mol Integr Physiol</addtitle><date>2001-09-01</date><risdate>2001</risdate><volume>130</volume><issue>2</issue><spage>207</spage><epage>218</epage><pages>207-218</pages><issn>1095-6433</issn><eissn>1531-4332</eissn><abstract>Experimental results consistently show that the respiratory control system is plastic, such that environmental factors and experience can modify its performance. Such plasticity may represent basic neurobiological principles of learning and memory, whereby intermittent sensory stimulation produces long-term alterations (i.e. facilitation or depression) in synaptic transmission depending on the timing and intensity of the stimulation. In this review, we propose that intermittent chemosensory stimulation produces long-term changes in respiratory motor output via specific neuromodulatory systems. This concept is based on recent data suggesting that intermittent hypoxia produces a net long-term facilitation of respiratory output via the serotonergic system, whereas intermittent hypercapnia produces a net long-term depression by a mechanism associated with the noradrenergic system. There is suggestive evidence that, although both respiratory stimuli activate both modulatory systems, the balance is different. Thus, these opposing modulatory influences on respiratory motor control may provide a ‘push–pull’ system, preventing unchecked and inappropriate fluctuations in ventilatory drive.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>11544068</pmid><doi>10.1016/S1095-6433(01)00393-2</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1095-6433 |
ispartof | Comparative Biochemistry and Physiology, Part A, 2001-09, Vol.130 (2), p.207-218 |
issn | 1095-6433 1531-4332 |
language | eng |
recordid | cdi_proquest_miscellaneous_71149441 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Animals Control of breathing Hypercapnia - physiopathology Hypoxia - physiopathology Long-term depression Long-term facilitation Neuromodulation Neuronal Plasticity - physiology Neurotransmitter Agents - physiology Norepinephrine - physiology Post-hypoxia frequency decline Respiratory Muscles - innervation Serotonin - physiology |
title | Plasticity in respiratory motor control: intermittent hypoxia and hypercapnia activate opposing serotonergic and noradrenergic modulatory systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T03%3A33%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasticity%20in%20respiratory%20motor%20control:%20intermittent%20hypoxia%20and%20hypercapnia%20activate%20opposing%20serotonergic%20and%20noradrenergic%20modulatory%20systems&rft.jtitle=Comparative%20Biochemistry%20and%20Physiology,%20Part%20A&rft.au=Kinkead,%20Richard&rft.date=2001-09-01&rft.volume=130&rft.issue=2&rft.spage=207&rft.epage=218&rft.pages=207-218&rft.issn=1095-6433&rft.eissn=1531-4332&rft_id=info:doi/10.1016/S1095-6433(01)00393-2&rft_dat=%3Cproquest_cross%3E18383100%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18383100&rft_id=info:pmid/11544068&rft_els_id=S1095643301003932&rfr_iscdi=true |