Viability of yeast cells in well controlled propagating and standing ultrasonic plane waves

Recent studies have shown that there is no loss of cell viability when the cells are subjected to ultrasonic standing wave fields in acoustic cell retention systems. These systems are characterised by waves that spatially vary in pressure amplitude in the direction of sound propagation. In this work...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ultrasonics 2000-03, Vol.38 (1), p.633-637
Hauptverfasser: Radel, S., McLoughlin, A.J., Gherardini, L., Doblhoff-Dier, O., Benes, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 637
container_issue 1
container_start_page 633
container_title Ultrasonics
container_volume 38
creator Radel, S.
McLoughlin, A.J.
Gherardini, L.
Doblhoff-Dier, O.
Benes, E.
description Recent studies have shown that there is no loss of cell viability when the cells are subjected to ultrasonic standing wave fields in acoustic cell retention systems. These systems are characterised by waves that spatially vary in pressure amplitude in the direction of sound propagation. In this work an anechoic ‘one-dimensional’ sonication chamber has been developed that produces propagating waves, which differ from standing waves in that the pressure amplitude remains constant as the wave travels in a medium with negligible attenuation. The viability of yeast cell suspensions as a function of treatment time was investigated during exposure to both standing and propagating wave fields with frequencies slightly above 2 MHz. The influence of 12% (vol/vol) of ethanol in water on the spatial arrangement of the cells in suspension was also studied. Changes in yeast cell morphology caused by the different types of suspension media and the ultrasonic treatment were examined by transmission electron microscopy (TEM). The agglomeration of yeast cells within the pressure nodal planes appears to minimise damaging effects due to ultrasonic fields.
doi_str_mv 10.1016/S0041-624X(99)00211-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71138568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0041624X99002115</els_id><sourcerecordid>470877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-a1cb7b7a0c252818ec5d98d1584e9d604c7d2c1045d5c9a6fadb6e401df623143</originalsourceid><addsrcrecordid>eNqFkE2LFDEQhoMo7uzqT1ByENFDayqdpJPTIourwoIHPxA8hOokvUQy3WOS2WX-vZmdQb3tJZXAU1VvHkKeAXsDDNTbL4wJ6BQXP14Z85oxDtDJB2QFehCdMUo_JKu_yAk5LeUXYyA09I_JCTDNzSBgRX5-jzjGFOuOLhPdBSyVupBSoXGmt-1C3TLXvKQUPN3kZYPXWON8TXH2tNR27h_bVDOWZY6ObhLOgd7iTShPyKMJUwlPj_WMfLt8__XiY3f1-cOni3dXnRMcaofgxmEckDkuuQYdnPRGe5BaBOMVE27w3AET0ktnUE3oRxUEAz8p3oPoz8jLw9yW7_c2lGrXsew_0ZIs22IHgF5Lpe8FOQguB8YbKA-gy0spOUx2k-Ma884Cs3v99k6_3bu1xtg7_Va2vufHBdtxHfx_XQffDXhxBLA4TFPG2cXyj-ul6oe-YecHLDRtNzFkW1wMsws-5uCq9Uu8J8kfVAOicA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21425702</pqid></control><display><type>article</type><title>Viability of yeast cells in well controlled propagating and standing ultrasonic plane waves</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Radel, S. ; McLoughlin, A.J. ; Gherardini, L. ; Doblhoff-Dier, O. ; Benes, E.</creator><creatorcontrib>Radel, S. ; McLoughlin, A.J. ; Gherardini, L. ; Doblhoff-Dier, O. ; Benes, E.</creatorcontrib><description>Recent studies have shown that there is no loss of cell viability when the cells are subjected to ultrasonic standing wave fields in acoustic cell retention systems. These systems are characterised by waves that spatially vary in pressure amplitude in the direction of sound propagation. In this work an anechoic ‘one-dimensional’ sonication chamber has been developed that produces propagating waves, which differ from standing waves in that the pressure amplitude remains constant as the wave travels in a medium with negligible attenuation. The viability of yeast cell suspensions as a function of treatment time was investigated during exposure to both standing and propagating wave fields with frequencies slightly above 2 MHz. The influence of 12% (vol/vol) of ethanol in water on the spatial arrangement of the cells in suspension was also studied. Changes in yeast cell morphology caused by the different types of suspension media and the ultrasonic treatment were examined by transmission electron microscopy (TEM). The agglomeration of yeast cells within the pressure nodal planes appears to minimise damaging effects due to ultrasonic fields.</description><identifier>ISSN: 0041-624X</identifier><identifier>EISSN: 1874-9968</identifier><identifier>DOI: 10.1016/S0041-624X(99)00211-5</identifier><identifier>PMID: 10829741</identifier><identifier>CODEN: ULTRA3</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Acoustic fields ; Acoustical measurements and instrumentation ; Acoustics ; Agglomeration ; Anechoic chambers ; Cell Survival ; Cell viability ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Microscopy, Electron ; Morphology ; Physics ; Pressure effects ; Saccharomyces cerevisiae - ultrastructure ; Sonication ; Transmission electron microscopy ; Ultrasonic effects ; Ultrasonic transmission ; Ultrasonics ; Ultrasonics, quantum acoustics, and physical effects of sound ; Ultrasound ; Ultrastructure ; Yeast ; Yeast cells</subject><ispartof>Ultrasonics, 2000-03, Vol.38 (1), p.633-637</ispartof><rights>2000 Elsevier Science B.V.</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-a1cb7b7a0c252818ec5d98d1584e9d604c7d2c1045d5c9a6fadb6e401df623143</citedby><cites>FETCH-LOGICAL-c421t-a1cb7b7a0c252818ec5d98d1584e9d604c7d2c1045d5c9a6fadb6e401df623143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0041-624X(99)00211-5$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3548,23929,23930,25139,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1356373$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10829741$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Radel, S.</creatorcontrib><creatorcontrib>McLoughlin, A.J.</creatorcontrib><creatorcontrib>Gherardini, L.</creatorcontrib><creatorcontrib>Doblhoff-Dier, O.</creatorcontrib><creatorcontrib>Benes, E.</creatorcontrib><title>Viability of yeast cells in well controlled propagating and standing ultrasonic plane waves</title><title>Ultrasonics</title><addtitle>Ultrasonics</addtitle><description>Recent studies have shown that there is no loss of cell viability when the cells are subjected to ultrasonic standing wave fields in acoustic cell retention systems. These systems are characterised by waves that spatially vary in pressure amplitude in the direction of sound propagation. In this work an anechoic ‘one-dimensional’ sonication chamber has been developed that produces propagating waves, which differ from standing waves in that the pressure amplitude remains constant as the wave travels in a medium with negligible attenuation. The viability of yeast cell suspensions as a function of treatment time was investigated during exposure to both standing and propagating wave fields with frequencies slightly above 2 MHz. The influence of 12% (vol/vol) of ethanol in water on the spatial arrangement of the cells in suspension was also studied. Changes in yeast cell morphology caused by the different types of suspension media and the ultrasonic treatment were examined by transmission electron microscopy (TEM). The agglomeration of yeast cells within the pressure nodal planes appears to minimise damaging effects due to ultrasonic fields.</description><subject>Acoustic fields</subject><subject>Acoustical measurements and instrumentation</subject><subject>Acoustics</subject><subject>Agglomeration</subject><subject>Anechoic chambers</subject><subject>Cell Survival</subject><subject>Cell viability</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Microscopy, Electron</subject><subject>Morphology</subject><subject>Physics</subject><subject>Pressure effects</subject><subject>Saccharomyces cerevisiae - ultrastructure</subject><subject>Sonication</subject><subject>Transmission electron microscopy</subject><subject>Ultrasonic effects</subject><subject>Ultrasonic transmission</subject><subject>Ultrasonics</subject><subject>Ultrasonics, quantum acoustics, and physical effects of sound</subject><subject>Ultrasound</subject><subject>Ultrastructure</subject><subject>Yeast</subject><subject>Yeast cells</subject><issn>0041-624X</issn><issn>1874-9968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE2LFDEQhoMo7uzqT1ByENFDayqdpJPTIourwoIHPxA8hOokvUQy3WOS2WX-vZmdQb3tJZXAU1VvHkKeAXsDDNTbL4wJ6BQXP14Z85oxDtDJB2QFehCdMUo_JKu_yAk5LeUXYyA09I_JCTDNzSBgRX5-jzjGFOuOLhPdBSyVupBSoXGmt-1C3TLXvKQUPN3kZYPXWON8TXH2tNR27h_bVDOWZY6ObhLOgd7iTShPyKMJUwlPj_WMfLt8__XiY3f1-cOni3dXnRMcaofgxmEckDkuuQYdnPRGe5BaBOMVE27w3AET0ktnUE3oRxUEAz8p3oPoz8jLw9yW7_c2lGrXsew_0ZIs22IHgF5Lpe8FOQguB8YbKA-gy0spOUx2k-Ma884Cs3v99k6_3bu1xtg7_Va2vufHBdtxHfx_XQffDXhxBLA4TFPG2cXyj-ul6oe-YecHLDRtNzFkW1wMsws-5uCq9Uu8J8kfVAOicA</recordid><startdate>20000301</startdate><enddate>20000301</enddate><creator>Radel, S.</creator><creator>McLoughlin, A.J.</creator><creator>Gherardini, L.</creator><creator>Doblhoff-Dier, O.</creator><creator>Benes, E.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20000301</creationdate><title>Viability of yeast cells in well controlled propagating and standing ultrasonic plane waves</title><author>Radel, S. ; McLoughlin, A.J. ; Gherardini, L. ; Doblhoff-Dier, O. ; Benes, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-a1cb7b7a0c252818ec5d98d1584e9d604c7d2c1045d5c9a6fadb6e401df623143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Acoustic fields</topic><topic>Acoustical measurements and instrumentation</topic><topic>Acoustics</topic><topic>Agglomeration</topic><topic>Anechoic chambers</topic><topic>Cell Survival</topic><topic>Cell viability</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Microscopy, Electron</topic><topic>Morphology</topic><topic>Physics</topic><topic>Pressure effects</topic><topic>Saccharomyces cerevisiae - ultrastructure</topic><topic>Sonication</topic><topic>Transmission electron microscopy</topic><topic>Ultrasonic effects</topic><topic>Ultrasonic transmission</topic><topic>Ultrasonics</topic><topic>Ultrasonics, quantum acoustics, and physical effects of sound</topic><topic>Ultrasound</topic><topic>Ultrastructure</topic><topic>Yeast</topic><topic>Yeast cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Radel, S.</creatorcontrib><creatorcontrib>McLoughlin, A.J.</creatorcontrib><creatorcontrib>Gherardini, L.</creatorcontrib><creatorcontrib>Doblhoff-Dier, O.</creatorcontrib><creatorcontrib>Benes, E.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Ultrasonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Radel, S.</au><au>McLoughlin, A.J.</au><au>Gherardini, L.</au><au>Doblhoff-Dier, O.</au><au>Benes, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Viability of yeast cells in well controlled propagating and standing ultrasonic plane waves</atitle><jtitle>Ultrasonics</jtitle><addtitle>Ultrasonics</addtitle><date>2000-03-01</date><risdate>2000</risdate><volume>38</volume><issue>1</issue><spage>633</spage><epage>637</epage><pages>633-637</pages><issn>0041-624X</issn><eissn>1874-9968</eissn><coden>ULTRA3</coden><abstract>Recent studies have shown that there is no loss of cell viability when the cells are subjected to ultrasonic standing wave fields in acoustic cell retention systems. These systems are characterised by waves that spatially vary in pressure amplitude in the direction of sound propagation. In this work an anechoic ‘one-dimensional’ sonication chamber has been developed that produces propagating waves, which differ from standing waves in that the pressure amplitude remains constant as the wave travels in a medium with negligible attenuation. The viability of yeast cell suspensions as a function of treatment time was investigated during exposure to both standing and propagating wave fields with frequencies slightly above 2 MHz. The influence of 12% (vol/vol) of ethanol in water on the spatial arrangement of the cells in suspension was also studied. Changes in yeast cell morphology caused by the different types of suspension media and the ultrasonic treatment were examined by transmission electron microscopy (TEM). The agglomeration of yeast cells within the pressure nodal planes appears to minimise damaging effects due to ultrasonic fields.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>10829741</pmid><doi>10.1016/S0041-624X(99)00211-5</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0041-624X
ispartof Ultrasonics, 2000-03, Vol.38 (1), p.633-637
issn 0041-624X
1874-9968
language eng
recordid cdi_proquest_miscellaneous_71138568
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Acoustic fields
Acoustical measurements and instrumentation
Acoustics
Agglomeration
Anechoic chambers
Cell Survival
Cell viability
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Microscopy, Electron
Morphology
Physics
Pressure effects
Saccharomyces cerevisiae - ultrastructure
Sonication
Transmission electron microscopy
Ultrasonic effects
Ultrasonic transmission
Ultrasonics
Ultrasonics, quantum acoustics, and physical effects of sound
Ultrasound
Ultrastructure
Yeast
Yeast cells
title Viability of yeast cells in well controlled propagating and standing ultrasonic plane waves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A24%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Viability%20of%20yeast%20cells%20in%20well%20controlled%20propagating%20and%20standing%20ultrasonic%20plane%20waves&rft.jtitle=Ultrasonics&rft.au=Radel,%20S.&rft.date=2000-03-01&rft.volume=38&rft.issue=1&rft.spage=633&rft.epage=637&rft.pages=633-637&rft.issn=0041-624X&rft.eissn=1874-9968&rft.coden=ULTRA3&rft_id=info:doi/10.1016/S0041-624X(99)00211-5&rft_dat=%3Cproquest_cross%3E470877%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21425702&rft_id=info:pmid/10829741&rft_els_id=S0041624X99002115&rfr_iscdi=true