Viability of yeast cells in well controlled propagating and standing ultrasonic plane waves
Recent studies have shown that there is no loss of cell viability when the cells are subjected to ultrasonic standing wave fields in acoustic cell retention systems. These systems are characterised by waves that spatially vary in pressure amplitude in the direction of sound propagation. In this work...
Gespeichert in:
Veröffentlicht in: | Ultrasonics 2000-03, Vol.38 (1), p.633-637 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 637 |
---|---|
container_issue | 1 |
container_start_page | 633 |
container_title | Ultrasonics |
container_volume | 38 |
creator | Radel, S. McLoughlin, A.J. Gherardini, L. Doblhoff-Dier, O. Benes, E. |
description | Recent studies have shown that there is no loss of cell viability when the cells are subjected to ultrasonic standing wave fields in acoustic cell retention systems. These systems are characterised by waves that spatially vary in pressure amplitude in the direction of sound propagation. In this work an anechoic ‘one-dimensional’ sonication chamber has been developed that produces propagating waves, which differ from standing waves in that the pressure amplitude remains constant as the wave travels in a medium with negligible attenuation. The viability of yeast cell suspensions as a function of treatment time was investigated during exposure to both standing and propagating wave fields with frequencies slightly above 2
MHz. The influence of 12% (vol/vol) of ethanol in water on the spatial arrangement of the cells in suspension was also studied. Changes in yeast cell morphology caused by the different types of suspension media and the ultrasonic treatment were examined by transmission electron microscopy (TEM). The agglomeration of yeast cells within the pressure nodal planes appears to minimise damaging effects due to ultrasonic fields. |
doi_str_mv | 10.1016/S0041-624X(99)00211-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71138568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0041624X99002115</els_id><sourcerecordid>470877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-a1cb7b7a0c252818ec5d98d1584e9d604c7d2c1045d5c9a6fadb6e401df623143</originalsourceid><addsrcrecordid>eNqFkE2LFDEQhoMo7uzqT1ByENFDayqdpJPTIourwoIHPxA8hOokvUQy3WOS2WX-vZmdQb3tJZXAU1VvHkKeAXsDDNTbL4wJ6BQXP14Z85oxDtDJB2QFehCdMUo_JKu_yAk5LeUXYyA09I_JCTDNzSBgRX5-jzjGFOuOLhPdBSyVupBSoXGmt-1C3TLXvKQUPN3kZYPXWON8TXH2tNR27h_bVDOWZY6ObhLOgd7iTShPyKMJUwlPj_WMfLt8__XiY3f1-cOni3dXnRMcaofgxmEckDkuuQYdnPRGe5BaBOMVE27w3AET0ktnUE3oRxUEAz8p3oPoz8jLw9yW7_c2lGrXsew_0ZIs22IHgF5Lpe8FOQguB8YbKA-gy0spOUx2k-Ma884Cs3v99k6_3bu1xtg7_Va2vufHBdtxHfx_XQffDXhxBLA4TFPG2cXyj-ul6oe-YecHLDRtNzFkW1wMsws-5uCq9Uu8J8kfVAOicA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21425702</pqid></control><display><type>article</type><title>Viability of yeast cells in well controlled propagating and standing ultrasonic plane waves</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Radel, S. ; McLoughlin, A.J. ; Gherardini, L. ; Doblhoff-Dier, O. ; Benes, E.</creator><creatorcontrib>Radel, S. ; McLoughlin, A.J. ; Gherardini, L. ; Doblhoff-Dier, O. ; Benes, E.</creatorcontrib><description>Recent studies have shown that there is no loss of cell viability when the cells are subjected to ultrasonic standing wave fields in acoustic cell retention systems. These systems are characterised by waves that spatially vary in pressure amplitude in the direction of sound propagation. In this work an anechoic ‘one-dimensional’ sonication chamber has been developed that produces propagating waves, which differ from standing waves in that the pressure amplitude remains constant as the wave travels in a medium with negligible attenuation. The viability of yeast cell suspensions as a function of treatment time was investigated during exposure to both standing and propagating wave fields with frequencies slightly above 2
MHz. The influence of 12% (vol/vol) of ethanol in water on the spatial arrangement of the cells in suspension was also studied. Changes in yeast cell morphology caused by the different types of suspension media and the ultrasonic treatment were examined by transmission electron microscopy (TEM). The agglomeration of yeast cells within the pressure nodal planes appears to minimise damaging effects due to ultrasonic fields.</description><identifier>ISSN: 0041-624X</identifier><identifier>EISSN: 1874-9968</identifier><identifier>DOI: 10.1016/S0041-624X(99)00211-5</identifier><identifier>PMID: 10829741</identifier><identifier>CODEN: ULTRA3</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Acoustic fields ; Acoustical measurements and instrumentation ; Acoustics ; Agglomeration ; Anechoic chambers ; Cell Survival ; Cell viability ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Microscopy, Electron ; Morphology ; Physics ; Pressure effects ; Saccharomyces cerevisiae - ultrastructure ; Sonication ; Transmission electron microscopy ; Ultrasonic effects ; Ultrasonic transmission ; Ultrasonics ; Ultrasonics, quantum acoustics, and physical effects of sound ; Ultrasound ; Ultrastructure ; Yeast ; Yeast cells</subject><ispartof>Ultrasonics, 2000-03, Vol.38 (1), p.633-637</ispartof><rights>2000 Elsevier Science B.V.</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-a1cb7b7a0c252818ec5d98d1584e9d604c7d2c1045d5c9a6fadb6e401df623143</citedby><cites>FETCH-LOGICAL-c421t-a1cb7b7a0c252818ec5d98d1584e9d604c7d2c1045d5c9a6fadb6e401df623143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0041-624X(99)00211-5$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,3548,23929,23930,25139,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1356373$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10829741$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Radel, S.</creatorcontrib><creatorcontrib>McLoughlin, A.J.</creatorcontrib><creatorcontrib>Gherardini, L.</creatorcontrib><creatorcontrib>Doblhoff-Dier, O.</creatorcontrib><creatorcontrib>Benes, E.</creatorcontrib><title>Viability of yeast cells in well controlled propagating and standing ultrasonic plane waves</title><title>Ultrasonics</title><addtitle>Ultrasonics</addtitle><description>Recent studies have shown that there is no loss of cell viability when the cells are subjected to ultrasonic standing wave fields in acoustic cell retention systems. These systems are characterised by waves that spatially vary in pressure amplitude in the direction of sound propagation. In this work an anechoic ‘one-dimensional’ sonication chamber has been developed that produces propagating waves, which differ from standing waves in that the pressure amplitude remains constant as the wave travels in a medium with negligible attenuation. The viability of yeast cell suspensions as a function of treatment time was investigated during exposure to both standing and propagating wave fields with frequencies slightly above 2
MHz. The influence of 12% (vol/vol) of ethanol in water on the spatial arrangement of the cells in suspension was also studied. Changes in yeast cell morphology caused by the different types of suspension media and the ultrasonic treatment were examined by transmission electron microscopy (TEM). The agglomeration of yeast cells within the pressure nodal planes appears to minimise damaging effects due to ultrasonic fields.</description><subject>Acoustic fields</subject><subject>Acoustical measurements and instrumentation</subject><subject>Acoustics</subject><subject>Agglomeration</subject><subject>Anechoic chambers</subject><subject>Cell Survival</subject><subject>Cell viability</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Microscopy, Electron</subject><subject>Morphology</subject><subject>Physics</subject><subject>Pressure effects</subject><subject>Saccharomyces cerevisiae - ultrastructure</subject><subject>Sonication</subject><subject>Transmission electron microscopy</subject><subject>Ultrasonic effects</subject><subject>Ultrasonic transmission</subject><subject>Ultrasonics</subject><subject>Ultrasonics, quantum acoustics, and physical effects of sound</subject><subject>Ultrasound</subject><subject>Ultrastructure</subject><subject>Yeast</subject><subject>Yeast cells</subject><issn>0041-624X</issn><issn>1874-9968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE2LFDEQhoMo7uzqT1ByENFDayqdpJPTIourwoIHPxA8hOokvUQy3WOS2WX-vZmdQb3tJZXAU1VvHkKeAXsDDNTbL4wJ6BQXP14Z85oxDtDJB2QFehCdMUo_JKu_yAk5LeUXYyA09I_JCTDNzSBgRX5-jzjGFOuOLhPdBSyVupBSoXGmt-1C3TLXvKQUPN3kZYPXWON8TXH2tNR27h_bVDOWZY6ObhLOgd7iTShPyKMJUwlPj_WMfLt8__XiY3f1-cOni3dXnRMcaofgxmEckDkuuQYdnPRGe5BaBOMVE27w3AET0ktnUE3oRxUEAz8p3oPoz8jLw9yW7_c2lGrXsew_0ZIs22IHgF5Lpe8FOQguB8YbKA-gy0spOUx2k-Ma884Cs3v99k6_3bu1xtg7_Va2vufHBdtxHfx_XQffDXhxBLA4TFPG2cXyj-ul6oe-YecHLDRtNzFkW1wMsws-5uCq9Uu8J8kfVAOicA</recordid><startdate>20000301</startdate><enddate>20000301</enddate><creator>Radel, S.</creator><creator>McLoughlin, A.J.</creator><creator>Gherardini, L.</creator><creator>Doblhoff-Dier, O.</creator><creator>Benes, E.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20000301</creationdate><title>Viability of yeast cells in well controlled propagating and standing ultrasonic plane waves</title><author>Radel, S. ; McLoughlin, A.J. ; Gherardini, L. ; Doblhoff-Dier, O. ; Benes, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-a1cb7b7a0c252818ec5d98d1584e9d604c7d2c1045d5c9a6fadb6e401df623143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Acoustic fields</topic><topic>Acoustical measurements and instrumentation</topic><topic>Acoustics</topic><topic>Agglomeration</topic><topic>Anechoic chambers</topic><topic>Cell Survival</topic><topic>Cell viability</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Microscopy, Electron</topic><topic>Morphology</topic><topic>Physics</topic><topic>Pressure effects</topic><topic>Saccharomyces cerevisiae - ultrastructure</topic><topic>Sonication</topic><topic>Transmission electron microscopy</topic><topic>Ultrasonic effects</topic><topic>Ultrasonic transmission</topic><topic>Ultrasonics</topic><topic>Ultrasonics, quantum acoustics, and physical effects of sound</topic><topic>Ultrasound</topic><topic>Ultrastructure</topic><topic>Yeast</topic><topic>Yeast cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Radel, S.</creatorcontrib><creatorcontrib>McLoughlin, A.J.</creatorcontrib><creatorcontrib>Gherardini, L.</creatorcontrib><creatorcontrib>Doblhoff-Dier, O.</creatorcontrib><creatorcontrib>Benes, E.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Ultrasonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Radel, S.</au><au>McLoughlin, A.J.</au><au>Gherardini, L.</au><au>Doblhoff-Dier, O.</au><au>Benes, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Viability of yeast cells in well controlled propagating and standing ultrasonic plane waves</atitle><jtitle>Ultrasonics</jtitle><addtitle>Ultrasonics</addtitle><date>2000-03-01</date><risdate>2000</risdate><volume>38</volume><issue>1</issue><spage>633</spage><epage>637</epage><pages>633-637</pages><issn>0041-624X</issn><eissn>1874-9968</eissn><coden>ULTRA3</coden><abstract>Recent studies have shown that there is no loss of cell viability when the cells are subjected to ultrasonic standing wave fields in acoustic cell retention systems. These systems are characterised by waves that spatially vary in pressure amplitude in the direction of sound propagation. In this work an anechoic ‘one-dimensional’ sonication chamber has been developed that produces propagating waves, which differ from standing waves in that the pressure amplitude remains constant as the wave travels in a medium with negligible attenuation. The viability of yeast cell suspensions as a function of treatment time was investigated during exposure to both standing and propagating wave fields with frequencies slightly above 2
MHz. The influence of 12% (vol/vol) of ethanol in water on the spatial arrangement of the cells in suspension was also studied. Changes in yeast cell morphology caused by the different types of suspension media and the ultrasonic treatment were examined by transmission electron microscopy (TEM). The agglomeration of yeast cells within the pressure nodal planes appears to minimise damaging effects due to ultrasonic fields.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>10829741</pmid><doi>10.1016/S0041-624X(99)00211-5</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0041-624X |
ispartof | Ultrasonics, 2000-03, Vol.38 (1), p.633-637 |
issn | 0041-624X 1874-9968 |
language | eng |
recordid | cdi_proquest_miscellaneous_71138568 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Acoustic fields Acoustical measurements and instrumentation Acoustics Agglomeration Anechoic chambers Cell Survival Cell viability Exact sciences and technology Fundamental areas of phenomenology (including applications) Microscopy, Electron Morphology Physics Pressure effects Saccharomyces cerevisiae - ultrastructure Sonication Transmission electron microscopy Ultrasonic effects Ultrasonic transmission Ultrasonics Ultrasonics, quantum acoustics, and physical effects of sound Ultrasound Ultrastructure Yeast Yeast cells |
title | Viability of yeast cells in well controlled propagating and standing ultrasonic plane waves |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A24%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Viability%20of%20yeast%20cells%20in%20well%20controlled%20propagating%20and%20standing%20ultrasonic%20plane%20waves&rft.jtitle=Ultrasonics&rft.au=Radel,%20S.&rft.date=2000-03-01&rft.volume=38&rft.issue=1&rft.spage=633&rft.epage=637&rft.pages=633-637&rft.issn=0041-624X&rft.eissn=1874-9968&rft.coden=ULTRA3&rft_id=info:doi/10.1016/S0041-624X(99)00211-5&rft_dat=%3Cproquest_cross%3E470877%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21425702&rft_id=info:pmid/10829741&rft_els_id=S0041624X99002115&rfr_iscdi=true |