Tomato contains homologues of Arabidopsis cryptochromes 1 and 2
Cryptochromes are blue light photoreceptors found in both plants and animals. They probably evolved from photolyases, which are blue/UV-light-absorbing photoreceptors involved in DNA repair. In seed plants, two different cryptochrome (CRY) genes have been found in Arabidopsis and one in Sinapis, whi...
Gespeichert in:
Veröffentlicht in: | Plant molecular biology 2000-03, Vol.42 (5), p.765-773 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 773 |
---|---|
container_issue | 5 |
container_start_page | 765 |
container_title | Plant molecular biology |
container_volume | 42 |
creator | Perrotta, G Ninu, L Flamma, F Weller, J L Kendrick, R E Nebuloso, E Giuliano, G |
description | Cryptochromes are blue light photoreceptors found in both plants and animals. They probably evolved from photolyases, which are blue/UV-light-absorbing photoreceptors involved in DNA repair. In seed plants, two different cryptochrome (CRY) genes have been found in Arabidopsis and one in Sinapis, while three genes have been found in the fern Adiantum. We report the characterisation of tomato CRY genes CRY1 and CRY2. They map to chromosomes 4 and 9, respectively, show relatively constitutive expression and encode proteins of 679 and 635 amino acids, respectively. These proteins show higher similarity to their Arabidopsis counterparts than to each other, suggesting that duplication between CRY1 and CRY2 is an ancient event in the evolution of seed plants. The seed plant cryptochromes form a group distinct from the fern cryptochromes, implying that only one gene was present in the common ancestor between these two groups of plants. Most intron positions in CRY genes from plants and ferns are highly conserved. Tomato cryl and cry2 proteins carry C-terminal domains 210 and 160 amino acids long, respectively. Several conserved motifs are found in these domains, some of which are common to both types of cryptochromes, while others are cryptochrome-type-specific. |
doi_str_mv | 10.1023/A:1006371130043 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_71136562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71136562</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-f08179fc88ca1aaf05d9e91cd7fe9bd6cde637a949cd5d146ba92ff5d6b171ba3</originalsourceid><addsrcrecordid>eNqF0DlPw0AQBeAVApEQqOmQRUFnmPFeXhoURVxSJJpQW-s9iCPba7x2kX-PEaGhoZpiPo3mPUIuEW4RMnq3vEcAQSUiBWD0iMyRS5pyyPJjMgcUMmUMsxk5i3EHMGEqTskMIQfFWD4nD5vQ6CEkJrSDrtqYbEMT6vAxupgEnyx7XVY2dLGKien33RDMtg_NtMREtzbJzsmJ13V0F4e5IO9Pj5vVS7p-e35dLdepoYhD6iFHqbzJc6NRaw_cKqfQWOmdKq0w1k0ptGLKWG6RiVKrzHtuRYkSS00X5ObnbteHz-m5oWiqaFxd69aFMRbfDQgusn8hSs6ZoDjB6z9wF8a-nUIUUiLjHBib0NUBjWXjbNH1VaP7ffFbIP0CS6JxgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>771455044</pqid></control><display><type>article</type><title>Tomato contains homologues of Arabidopsis cryptochromes 1 and 2</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Perrotta, G ; Ninu, L ; Flamma, F ; Weller, J L ; Kendrick, R E ; Nebuloso, E ; Giuliano, G</creator><creatorcontrib>Perrotta, G ; Ninu, L ; Flamma, F ; Weller, J L ; Kendrick, R E ; Nebuloso, E ; Giuliano, G</creatorcontrib><description>Cryptochromes are blue light photoreceptors found in both plants and animals. They probably evolved from photolyases, which are blue/UV-light-absorbing photoreceptors involved in DNA repair. In seed plants, two different cryptochrome (CRY) genes have been found in Arabidopsis and one in Sinapis, while three genes have been found in the fern Adiantum. We report the characterisation of tomato CRY genes CRY1 and CRY2. They map to chromosomes 4 and 9, respectively, show relatively constitutive expression and encode proteins of 679 and 635 amino acids, respectively. These proteins show higher similarity to their Arabidopsis counterparts than to each other, suggesting that duplication between CRY1 and CRY2 is an ancient event in the evolution of seed plants. The seed plant cryptochromes form a group distinct from the fern cryptochromes, implying that only one gene was present in the common ancestor between these two groups of plants. Most intron positions in CRY genes from plants and ferns are highly conserved. Tomato cryl and cry2 proteins carry C-terminal domains 210 and 160 amino acids long, respectively. Several conserved motifs are found in these domains, some of which are common to both types of cryptochromes, while others are cryptochrome-type-specific.</description><identifier>ISSN: 0167-4412</identifier><identifier>EISSN: 1573-5028</identifier><identifier>DOI: 10.1023/A:1006371130043</identifier><identifier>PMID: 10809448</identifier><language>eng</language><publisher>Netherlands: Springer Nature B.V</publisher><subject>Amino Acid Sequence ; Amino acids ; Arabidopsis - genetics ; Arabidopsis Proteins ; chromosome 1 ; chromosome 9 ; Chromosome Mapping ; Chromosomes ; CRY1 gene ; CRY2 gene ; Cryptochromes ; DNA repair ; DNA, Complementary - chemistry ; DNA, Complementary - genetics ; DNA, Plant - chemistry ; DNA, Plant - genetics ; Drosophila Proteins ; Exons ; Eye Proteins ; Ferns ; Flavoproteins - genetics ; Gene Expression Regulation, Plant - radiation effects ; Genes, Plant - genetics ; Introns ; Light ; Lycopersicon esculentum ; Lycopersicon esculentum - genetics ; Lycopersicon esculentum - radiation effects ; Molecular Sequence Data ; Photoreception ; Photoreceptor Cells, Invertebrate ; Phylogeny ; Plant Proteins - genetics ; Receptors, G-Protein-Coupled ; Sequence Alignment ; Sequence Analysis, DNA ; Sequence Homology, Amino Acid ; Space life sciences ; Tomatoes</subject><ispartof>Plant molecular biology, 2000-03, Vol.42 (5), p.765-773</ispartof><rights>Kluwer Academic Publishers 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-f08179fc88ca1aaf05d9e91cd7fe9bd6cde637a949cd5d146ba92ff5d6b171ba3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10809448$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Perrotta, G</creatorcontrib><creatorcontrib>Ninu, L</creatorcontrib><creatorcontrib>Flamma, F</creatorcontrib><creatorcontrib>Weller, J L</creatorcontrib><creatorcontrib>Kendrick, R E</creatorcontrib><creatorcontrib>Nebuloso, E</creatorcontrib><creatorcontrib>Giuliano, G</creatorcontrib><title>Tomato contains homologues of Arabidopsis cryptochromes 1 and 2</title><title>Plant molecular biology</title><addtitle>Plant Mol Biol</addtitle><description>Cryptochromes are blue light photoreceptors found in both plants and animals. They probably evolved from photolyases, which are blue/UV-light-absorbing photoreceptors involved in DNA repair. In seed plants, two different cryptochrome (CRY) genes have been found in Arabidopsis and one in Sinapis, while three genes have been found in the fern Adiantum. We report the characterisation of tomato CRY genes CRY1 and CRY2. They map to chromosomes 4 and 9, respectively, show relatively constitutive expression and encode proteins of 679 and 635 amino acids, respectively. These proteins show higher similarity to their Arabidopsis counterparts than to each other, suggesting that duplication between CRY1 and CRY2 is an ancient event in the evolution of seed plants. The seed plant cryptochromes form a group distinct from the fern cryptochromes, implying that only one gene was present in the common ancestor between these two groups of plants. Most intron positions in CRY genes from plants and ferns are highly conserved. Tomato cryl and cry2 proteins carry C-terminal domains 210 and 160 amino acids long, respectively. Several conserved motifs are found in these domains, some of which are common to both types of cryptochromes, while others are cryptochrome-type-specific.</description><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis Proteins</subject><subject>chromosome 1</subject><subject>chromosome 9</subject><subject>Chromosome Mapping</subject><subject>Chromosomes</subject><subject>CRY1 gene</subject><subject>CRY2 gene</subject><subject>Cryptochromes</subject><subject>DNA repair</subject><subject>DNA, Complementary - chemistry</subject><subject>DNA, Complementary - genetics</subject><subject>DNA, Plant - chemistry</subject><subject>DNA, Plant - genetics</subject><subject>Drosophila Proteins</subject><subject>Exons</subject><subject>Eye Proteins</subject><subject>Ferns</subject><subject>Flavoproteins - genetics</subject><subject>Gene Expression Regulation, Plant - radiation effects</subject><subject>Genes, Plant - genetics</subject><subject>Introns</subject><subject>Light</subject><subject>Lycopersicon esculentum</subject><subject>Lycopersicon esculentum - genetics</subject><subject>Lycopersicon esculentum - radiation effects</subject><subject>Molecular Sequence Data</subject><subject>Photoreception</subject><subject>Photoreceptor Cells, Invertebrate</subject><subject>Phylogeny</subject><subject>Plant Proteins - genetics</subject><subject>Receptors, G-Protein-Coupled</subject><subject>Sequence Alignment</subject><subject>Sequence Analysis, DNA</subject><subject>Sequence Homology, Amino Acid</subject><subject>Space life sciences</subject><subject>Tomatoes</subject><issn>0167-4412</issn><issn>1573-5028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0DlPw0AQBeAVApEQqOmQRUFnmPFeXhoURVxSJJpQW-s9iCPba7x2kX-PEaGhoZpiPo3mPUIuEW4RMnq3vEcAQSUiBWD0iMyRS5pyyPJjMgcUMmUMsxk5i3EHMGEqTskMIQfFWD4nD5vQ6CEkJrSDrtqYbEMT6vAxupgEnyx7XVY2dLGKien33RDMtg_NtMREtzbJzsmJ13V0F4e5IO9Pj5vVS7p-e35dLdepoYhD6iFHqbzJc6NRaw_cKqfQWOmdKq0w1k0ptGLKWG6RiVKrzHtuRYkSS00X5ObnbteHz-m5oWiqaFxd69aFMRbfDQgusn8hSs6ZoDjB6z9wF8a-nUIUUiLjHBib0NUBjWXjbNH1VaP7ffFbIP0CS6JxgQ</recordid><startdate>20000301</startdate><enddate>20000301</enddate><creator>Perrotta, G</creator><creator>Ninu, L</creator><creator>Flamma, F</creator><creator>Weller, J L</creator><creator>Kendrick, R E</creator><creator>Nebuloso, E</creator><creator>Giuliano, G</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20000301</creationdate><title>Tomato contains homologues of Arabidopsis cryptochromes 1 and 2</title><author>Perrotta, G ; Ninu, L ; Flamma, F ; Weller, J L ; Kendrick, R E ; Nebuloso, E ; Giuliano, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-f08179fc88ca1aaf05d9e91cd7fe9bd6cde637a949cd5d146ba92ff5d6b171ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis Proteins</topic><topic>chromosome 1</topic><topic>chromosome 9</topic><topic>Chromosome Mapping</topic><topic>Chromosomes</topic><topic>CRY1 gene</topic><topic>CRY2 gene</topic><topic>Cryptochromes</topic><topic>DNA repair</topic><topic>DNA, Complementary - chemistry</topic><topic>DNA, Complementary - genetics</topic><topic>DNA, Plant - chemistry</topic><topic>DNA, Plant - genetics</topic><topic>Drosophila Proteins</topic><topic>Exons</topic><topic>Eye Proteins</topic><topic>Ferns</topic><topic>Flavoproteins - genetics</topic><topic>Gene Expression Regulation, Plant - radiation effects</topic><topic>Genes, Plant - genetics</topic><topic>Introns</topic><topic>Light</topic><topic>Lycopersicon esculentum</topic><topic>Lycopersicon esculentum - genetics</topic><topic>Lycopersicon esculentum - radiation effects</topic><topic>Molecular Sequence Data</topic><topic>Photoreception</topic><topic>Photoreceptor Cells, Invertebrate</topic><topic>Phylogeny</topic><topic>Plant Proteins - genetics</topic><topic>Receptors, G-Protein-Coupled</topic><topic>Sequence Alignment</topic><topic>Sequence Analysis, DNA</topic><topic>Sequence Homology, Amino Acid</topic><topic>Space life sciences</topic><topic>Tomatoes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perrotta, G</creatorcontrib><creatorcontrib>Ninu, L</creatorcontrib><creatorcontrib>Flamma, F</creatorcontrib><creatorcontrib>Weller, J L</creatorcontrib><creatorcontrib>Kendrick, R E</creatorcontrib><creatorcontrib>Nebuloso, E</creatorcontrib><creatorcontrib>Giuliano, G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Plant molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perrotta, G</au><au>Ninu, L</au><au>Flamma, F</au><au>Weller, J L</au><au>Kendrick, R E</au><au>Nebuloso, E</au><au>Giuliano, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tomato contains homologues of Arabidopsis cryptochromes 1 and 2</atitle><jtitle>Plant molecular biology</jtitle><addtitle>Plant Mol Biol</addtitle><date>2000-03-01</date><risdate>2000</risdate><volume>42</volume><issue>5</issue><spage>765</spage><epage>773</epage><pages>765-773</pages><issn>0167-4412</issn><eissn>1573-5028</eissn><abstract>Cryptochromes are blue light photoreceptors found in both plants and animals. They probably evolved from photolyases, which are blue/UV-light-absorbing photoreceptors involved in DNA repair. In seed plants, two different cryptochrome (CRY) genes have been found in Arabidopsis and one in Sinapis, while three genes have been found in the fern Adiantum. We report the characterisation of tomato CRY genes CRY1 and CRY2. They map to chromosomes 4 and 9, respectively, show relatively constitutive expression and encode proteins of 679 and 635 amino acids, respectively. These proteins show higher similarity to their Arabidopsis counterparts than to each other, suggesting that duplication between CRY1 and CRY2 is an ancient event in the evolution of seed plants. The seed plant cryptochromes form a group distinct from the fern cryptochromes, implying that only one gene was present in the common ancestor between these two groups of plants. Most intron positions in CRY genes from plants and ferns are highly conserved. Tomato cryl and cry2 proteins carry C-terminal domains 210 and 160 amino acids long, respectively. Several conserved motifs are found in these domains, some of which are common to both types of cryptochromes, while others are cryptochrome-type-specific.</abstract><cop>Netherlands</cop><pub>Springer Nature B.V</pub><pmid>10809448</pmid><doi>10.1023/A:1006371130043</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-4412 |
ispartof | Plant molecular biology, 2000-03, Vol.42 (5), p.765-773 |
issn | 0167-4412 1573-5028 |
language | eng |
recordid | cdi_proquest_miscellaneous_71136562 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Amino Acid Sequence Amino acids Arabidopsis - genetics Arabidopsis Proteins chromosome 1 chromosome 9 Chromosome Mapping Chromosomes CRY1 gene CRY2 gene Cryptochromes DNA repair DNA, Complementary - chemistry DNA, Complementary - genetics DNA, Plant - chemistry DNA, Plant - genetics Drosophila Proteins Exons Eye Proteins Ferns Flavoproteins - genetics Gene Expression Regulation, Plant - radiation effects Genes, Plant - genetics Introns Light Lycopersicon esculentum Lycopersicon esculentum - genetics Lycopersicon esculentum - radiation effects Molecular Sequence Data Photoreception Photoreceptor Cells, Invertebrate Phylogeny Plant Proteins - genetics Receptors, G-Protein-Coupled Sequence Alignment Sequence Analysis, DNA Sequence Homology, Amino Acid Space life sciences Tomatoes |
title | Tomato contains homologues of Arabidopsis cryptochromes 1 and 2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A21%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tomato%20contains%20homologues%20of%20Arabidopsis%20cryptochromes%201%20and%202&rft.jtitle=Plant%20molecular%20biology&rft.au=Perrotta,%20G&rft.date=2000-03-01&rft.volume=42&rft.issue=5&rft.spage=765&rft.epage=773&rft.pages=765-773&rft.issn=0167-4412&rft.eissn=1573-5028&rft_id=info:doi/10.1023/A:1006371130043&rft_dat=%3Cproquest_pubme%3E71136562%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=771455044&rft_id=info:pmid/10809448&rfr_iscdi=true |