Mechanisms of glucose transport at the blood–brain barrier: an in vitro study

How the brain meets its continuous high metabolic demand in light of varying plasma glucose levels and a functional blood–brain barrier (BBB) is poorly understood. GLUT-1, found in high density at the BBB appears to maintain the continuous shuttling of glucose across the blood–brain barrier irrespec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain research 2001-06, Vol.904 (1), p.20-30
Hauptverfasser: McAllister, Mark S, Krizanac-Bengez, Ljiljana, Macchia, Francesco, Naftalin, Richard J, Pedley, Kevin C, Mayberg, Marc R, Marroni, Matteo, Leaman, Susan, Stanness, Kathe A, Janigro, Damir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 30
container_issue 1
container_start_page 20
container_title Brain research
container_volume 904
creator McAllister, Mark S
Krizanac-Bengez, Ljiljana
Macchia, Francesco
Naftalin, Richard J
Pedley, Kevin C
Mayberg, Marc R
Marroni, Matteo
Leaman, Susan
Stanness, Kathe A
Janigro, Damir
description How the brain meets its continuous high metabolic demand in light of varying plasma glucose levels and a functional blood–brain barrier (BBB) is poorly understood. GLUT-1, found in high density at the BBB appears to maintain the continuous shuttling of glucose across the blood–brain barrier irrespective of the plasma concentration. We examined the process of glucose transport across a quasi-physiological in vitro blood–brain barrier model. Radiolabeled tracer permeability studies revealed a concentration ratio of abluminal to luminal glucose in this blood–brain barrier model of approximately 0.85. Under conditions where [glucose] lumen was higher than [glucose] ablumen, influx of radiolabeled 2-deoxyglucose from lumen to the abluminal compartment was approximately 35% higher than efflux from the abluminal side to the lumen. However, when compartmental [glucose] were maintained equal, a reversal of this trend was seen (approximately 19% higher efflux towards the lumen), favoring establishment of a luminal to abluminal concentration gradient. Immunocytochemical experiments revealed that in addition to segregation of GLUT-1 (luminal>abluminal), the intracellular enzyme hexokinase was also asymmetrically distributed (abluminal>luminal). We conclude that glucose transport at the CNS/blood interface appears to be dependent on and regulated by a serial chain of membrane-bound and intracellular transporters and enzymes.
doi_str_mv 10.1016/S0006-8993(01)02418-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71113092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006899301024180</els_id><sourcerecordid>71113092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-9f2675b0e7b6bb1ba59ee9c1f026e50d951237fbda92af9a0a47ca291424aec63</originalsourceid><addsrcrecordid>eNqFkMtuFDEQRS0EIpPAJ4C8AYVFhyr309kgFPGSgrIA1lbZXU2MetqD7Y6UXf6BP-RL0pMZJcusSiWde6t0hHiFcIKAzfsfANAUndblMeA7UBV2BTwRK-xaVTSqgqdidY8ciMOU_ixrWWp4Lg4Qa2wq6Fbi4ju7S5p8WicZBvl7nF1ILHOkKW1CzJKyzJcs7RhC___mn43kJ2kpRs_xVNIkl_XK5xhkynN__UI8G2hM_HI_j8Svz59-nn0tzi--fDv7eF64uoJc6EE1bW2BW9tYi5ZqzawdDqAarqHXNaqyHWxPWtGgCahqHSmNlaqIXVMeibe73k0Mf2dO2ax9cjyONHGYk2kRsQStHgWxg1arbttY70AXQ0qRB7OJfk3x2iCYrXJzp9xsfRpAc6fcwJJ7vT8w2zX3D6m94wV4swcoORqHRa3z6YGroK2V3hZ92HG8eLta9JrkPE-Oex_ZZdMH_8grt0kqnjk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18079286</pqid></control><display><type>article</type><title>Mechanisms of glucose transport at the blood–brain barrier: an in vitro study</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>McAllister, Mark S ; Krizanac-Bengez, Ljiljana ; Macchia, Francesco ; Naftalin, Richard J ; Pedley, Kevin C ; Mayberg, Marc R ; Marroni, Matteo ; Leaman, Susan ; Stanness, Kathe A ; Janigro, Damir</creator><creatorcontrib>McAllister, Mark S ; Krizanac-Bengez, Ljiljana ; Macchia, Francesco ; Naftalin, Richard J ; Pedley, Kevin C ; Mayberg, Marc R ; Marroni, Matteo ; Leaman, Susan ; Stanness, Kathe A ; Janigro, Damir</creatorcontrib><description>How the brain meets its continuous high metabolic demand in light of varying plasma glucose levels and a functional blood–brain barrier (BBB) is poorly understood. GLUT-1, found in high density at the BBB appears to maintain the continuous shuttling of glucose across the blood–brain barrier irrespective of the plasma concentration. We examined the process of glucose transport across a quasi-physiological in vitro blood–brain barrier model. Radiolabeled tracer permeability studies revealed a concentration ratio of abluminal to luminal glucose in this blood–brain barrier model of approximately 0.85. Under conditions where [glucose] lumen was higher than [glucose] ablumen, influx of radiolabeled 2-deoxyglucose from lumen to the abluminal compartment was approximately 35% higher than efflux from the abluminal side to the lumen. However, when compartmental [glucose] were maintained equal, a reversal of this trend was seen (approximately 19% higher efflux towards the lumen), favoring establishment of a luminal to abluminal concentration gradient. Immunocytochemical experiments revealed that in addition to segregation of GLUT-1 (luminal&gt;abluminal), the intracellular enzyme hexokinase was also asymmetrically distributed (abluminal&gt;luminal). We conclude that glucose transport at the CNS/blood interface appears to be dependent on and regulated by a serial chain of membrane-bound and intracellular transporters and enzymes.</description><identifier>ISSN: 0006-8993</identifier><identifier>EISSN: 1872-6240</identifier><identifier>DOI: 10.1016/S0006-8993(01)02418-0</identifier><identifier>PMID: 11516408</identifier><identifier>CODEN: BRREAP</identifier><language>eng</language><publisher>London: Elsevier B.V</publisher><subject>Animals ; Astrocytes - cytology ; Astrocytes - metabolism ; Biological and medical sciences ; Blood-Brain Barrier - drug effects ; Blood-Brain Barrier - physiology ; Brain metabolism ; Carbon Radioisotopes - pharmacokinetics ; Cattle ; Cell Compartmentation - drug effects ; Cell Compartmentation - physiology ; Cell Differentiation - physiology ; Cell Membrane - drug effects ; Cell Membrane - metabolism ; Cell Membrane Permeability - physiology ; Cells, Cultured ; Cerebral circulation. Blood-brain barrier. Choroid plexus. Cerebrospinal fluid. Circumventricular organ. Meninges ; Coculture Techniques ; Deoxyglucose - pharmacokinetics ; Endothelium, Vascular - cytology ; Endothelium, Vascular - metabolism ; Epilepsy ; Fetus ; Fundamental and applied biological sciences. Psychology ; Glucose - metabolism ; Glucose Transporter Type 1 ; GLUT-1 ; hexokinase ; Hexokinase - metabolism ; Immunohistochemistry ; In vitro models ; Membranes, Artificial ; Monosaccharide Transport Proteins - drug effects ; Monosaccharide Transport Proteins - metabolism ; Phenotype ; Rats ; Tight junctions ; Vertebrates: nervous system and sense organs</subject><ispartof>Brain research, 2001-06, Vol.904 (1), p.20-30</ispartof><rights>2001</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-9f2675b0e7b6bb1ba59ee9c1f026e50d951237fbda92af9a0a47ca291424aec63</citedby><cites>FETCH-LOGICAL-c540t-9f2675b0e7b6bb1ba59ee9c1f026e50d951237fbda92af9a0a47ca291424aec63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006899301024180$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14075290$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11516408$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McAllister, Mark S</creatorcontrib><creatorcontrib>Krizanac-Bengez, Ljiljana</creatorcontrib><creatorcontrib>Macchia, Francesco</creatorcontrib><creatorcontrib>Naftalin, Richard J</creatorcontrib><creatorcontrib>Pedley, Kevin C</creatorcontrib><creatorcontrib>Mayberg, Marc R</creatorcontrib><creatorcontrib>Marroni, Matteo</creatorcontrib><creatorcontrib>Leaman, Susan</creatorcontrib><creatorcontrib>Stanness, Kathe A</creatorcontrib><creatorcontrib>Janigro, Damir</creatorcontrib><title>Mechanisms of glucose transport at the blood–brain barrier: an in vitro study</title><title>Brain research</title><addtitle>Brain Res</addtitle><description>How the brain meets its continuous high metabolic demand in light of varying plasma glucose levels and a functional blood–brain barrier (BBB) is poorly understood. GLUT-1, found in high density at the BBB appears to maintain the continuous shuttling of glucose across the blood–brain barrier irrespective of the plasma concentration. We examined the process of glucose transport across a quasi-physiological in vitro blood–brain barrier model. Radiolabeled tracer permeability studies revealed a concentration ratio of abluminal to luminal glucose in this blood–brain barrier model of approximately 0.85. Under conditions where [glucose] lumen was higher than [glucose] ablumen, influx of radiolabeled 2-deoxyglucose from lumen to the abluminal compartment was approximately 35% higher than efflux from the abluminal side to the lumen. However, when compartmental [glucose] were maintained equal, a reversal of this trend was seen (approximately 19% higher efflux towards the lumen), favoring establishment of a luminal to abluminal concentration gradient. Immunocytochemical experiments revealed that in addition to segregation of GLUT-1 (luminal&gt;abluminal), the intracellular enzyme hexokinase was also asymmetrically distributed (abluminal&gt;luminal). We conclude that glucose transport at the CNS/blood interface appears to be dependent on and regulated by a serial chain of membrane-bound and intracellular transporters and enzymes.</description><subject>Animals</subject><subject>Astrocytes - cytology</subject><subject>Astrocytes - metabolism</subject><subject>Biological and medical sciences</subject><subject>Blood-Brain Barrier - drug effects</subject><subject>Blood-Brain Barrier - physiology</subject><subject>Brain metabolism</subject><subject>Carbon Radioisotopes - pharmacokinetics</subject><subject>Cattle</subject><subject>Cell Compartmentation - drug effects</subject><subject>Cell Compartmentation - physiology</subject><subject>Cell Differentiation - physiology</subject><subject>Cell Membrane - drug effects</subject><subject>Cell Membrane - metabolism</subject><subject>Cell Membrane Permeability - physiology</subject><subject>Cells, Cultured</subject><subject>Cerebral circulation. Blood-brain barrier. Choroid plexus. Cerebrospinal fluid. Circumventricular organ. Meninges</subject><subject>Coculture Techniques</subject><subject>Deoxyglucose - pharmacokinetics</subject><subject>Endothelium, Vascular - cytology</subject><subject>Endothelium, Vascular - metabolism</subject><subject>Epilepsy</subject><subject>Fetus</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glucose - metabolism</subject><subject>Glucose Transporter Type 1</subject><subject>GLUT-1</subject><subject>hexokinase</subject><subject>Hexokinase - metabolism</subject><subject>Immunohistochemistry</subject><subject>In vitro models</subject><subject>Membranes, Artificial</subject><subject>Monosaccharide Transport Proteins - drug effects</subject><subject>Monosaccharide Transport Proteins - metabolism</subject><subject>Phenotype</subject><subject>Rats</subject><subject>Tight junctions</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0006-8993</issn><issn>1872-6240</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtuFDEQRS0EIpPAJ4C8AYVFhyr309kgFPGSgrIA1lbZXU2MetqD7Y6UXf6BP-RL0pMZJcusSiWde6t0hHiFcIKAzfsfANAUndblMeA7UBV2BTwRK-xaVTSqgqdidY8ciMOU_ixrWWp4Lg4Qa2wq6Fbi4ju7S5p8WicZBvl7nF1ILHOkKW1CzJKyzJcs7RhC___mn43kJ2kpRs_xVNIkl_XK5xhkynN__UI8G2hM_HI_j8Svz59-nn0tzi--fDv7eF64uoJc6EE1bW2BW9tYi5ZqzawdDqAarqHXNaqyHWxPWtGgCahqHSmNlaqIXVMeibe73k0Mf2dO2ax9cjyONHGYk2kRsQStHgWxg1arbttY70AXQ0qRB7OJfk3x2iCYrXJzp9xsfRpAc6fcwJJ7vT8w2zX3D6m94wV4swcoORqHRa3z6YGroK2V3hZ92HG8eLta9JrkPE-Oex_ZZdMH_8grt0kqnjk</recordid><startdate>20010615</startdate><enddate>20010615</enddate><creator>McAllister, Mark S</creator><creator>Krizanac-Bengez, Ljiljana</creator><creator>Macchia, Francesco</creator><creator>Naftalin, Richard J</creator><creator>Pedley, Kevin C</creator><creator>Mayberg, Marc R</creator><creator>Marroni, Matteo</creator><creator>Leaman, Susan</creator><creator>Stanness, Kathe A</creator><creator>Janigro, Damir</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20010615</creationdate><title>Mechanisms of glucose transport at the blood–brain barrier: an in vitro study</title><author>McAllister, Mark S ; Krizanac-Bengez, Ljiljana ; Macchia, Francesco ; Naftalin, Richard J ; Pedley, Kevin C ; Mayberg, Marc R ; Marroni, Matteo ; Leaman, Susan ; Stanness, Kathe A ; Janigro, Damir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-9f2675b0e7b6bb1ba59ee9c1f026e50d951237fbda92af9a0a47ca291424aec63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Animals</topic><topic>Astrocytes - cytology</topic><topic>Astrocytes - metabolism</topic><topic>Biological and medical sciences</topic><topic>Blood-Brain Barrier - drug effects</topic><topic>Blood-Brain Barrier - physiology</topic><topic>Brain metabolism</topic><topic>Carbon Radioisotopes - pharmacokinetics</topic><topic>Cattle</topic><topic>Cell Compartmentation - drug effects</topic><topic>Cell Compartmentation - physiology</topic><topic>Cell Differentiation - physiology</topic><topic>Cell Membrane - drug effects</topic><topic>Cell Membrane - metabolism</topic><topic>Cell Membrane Permeability - physiology</topic><topic>Cells, Cultured</topic><topic>Cerebral circulation. Blood-brain barrier. Choroid plexus. Cerebrospinal fluid. Circumventricular organ. Meninges</topic><topic>Coculture Techniques</topic><topic>Deoxyglucose - pharmacokinetics</topic><topic>Endothelium, Vascular - cytology</topic><topic>Endothelium, Vascular - metabolism</topic><topic>Epilepsy</topic><topic>Fetus</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glucose - metabolism</topic><topic>Glucose Transporter Type 1</topic><topic>GLUT-1</topic><topic>hexokinase</topic><topic>Hexokinase - metabolism</topic><topic>Immunohistochemistry</topic><topic>In vitro models</topic><topic>Membranes, Artificial</topic><topic>Monosaccharide Transport Proteins - drug effects</topic><topic>Monosaccharide Transport Proteins - metabolism</topic><topic>Phenotype</topic><topic>Rats</topic><topic>Tight junctions</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McAllister, Mark S</creatorcontrib><creatorcontrib>Krizanac-Bengez, Ljiljana</creatorcontrib><creatorcontrib>Macchia, Francesco</creatorcontrib><creatorcontrib>Naftalin, Richard J</creatorcontrib><creatorcontrib>Pedley, Kevin C</creatorcontrib><creatorcontrib>Mayberg, Marc R</creatorcontrib><creatorcontrib>Marroni, Matteo</creatorcontrib><creatorcontrib>Leaman, Susan</creatorcontrib><creatorcontrib>Stanness, Kathe A</creatorcontrib><creatorcontrib>Janigro, Damir</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Brain research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McAllister, Mark S</au><au>Krizanac-Bengez, Ljiljana</au><au>Macchia, Francesco</au><au>Naftalin, Richard J</au><au>Pedley, Kevin C</au><au>Mayberg, Marc R</au><au>Marroni, Matteo</au><au>Leaman, Susan</au><au>Stanness, Kathe A</au><au>Janigro, Damir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms of glucose transport at the blood–brain barrier: an in vitro study</atitle><jtitle>Brain research</jtitle><addtitle>Brain Res</addtitle><date>2001-06-15</date><risdate>2001</risdate><volume>904</volume><issue>1</issue><spage>20</spage><epage>30</epage><pages>20-30</pages><issn>0006-8993</issn><eissn>1872-6240</eissn><coden>BRREAP</coden><abstract>How the brain meets its continuous high metabolic demand in light of varying plasma glucose levels and a functional blood–brain barrier (BBB) is poorly understood. GLUT-1, found in high density at the BBB appears to maintain the continuous shuttling of glucose across the blood–brain barrier irrespective of the plasma concentration. We examined the process of glucose transport across a quasi-physiological in vitro blood–brain barrier model. Radiolabeled tracer permeability studies revealed a concentration ratio of abluminal to luminal glucose in this blood–brain barrier model of approximately 0.85. Under conditions where [glucose] lumen was higher than [glucose] ablumen, influx of radiolabeled 2-deoxyglucose from lumen to the abluminal compartment was approximately 35% higher than efflux from the abluminal side to the lumen. However, when compartmental [glucose] were maintained equal, a reversal of this trend was seen (approximately 19% higher efflux towards the lumen), favoring establishment of a luminal to abluminal concentration gradient. Immunocytochemical experiments revealed that in addition to segregation of GLUT-1 (luminal&gt;abluminal), the intracellular enzyme hexokinase was also asymmetrically distributed (abluminal&gt;luminal). We conclude that glucose transport at the CNS/blood interface appears to be dependent on and regulated by a serial chain of membrane-bound and intracellular transporters and enzymes.</abstract><cop>London</cop><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><pmid>11516408</pmid><doi>10.1016/S0006-8993(01)02418-0</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-8993
ispartof Brain research, 2001-06, Vol.904 (1), p.20-30
issn 0006-8993
1872-6240
language eng
recordid cdi_proquest_miscellaneous_71113092
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Astrocytes - cytology
Astrocytes - metabolism
Biological and medical sciences
Blood-Brain Barrier - drug effects
Blood-Brain Barrier - physiology
Brain metabolism
Carbon Radioisotopes - pharmacokinetics
Cattle
Cell Compartmentation - drug effects
Cell Compartmentation - physiology
Cell Differentiation - physiology
Cell Membrane - drug effects
Cell Membrane - metabolism
Cell Membrane Permeability - physiology
Cells, Cultured
Cerebral circulation. Blood-brain barrier. Choroid plexus. Cerebrospinal fluid. Circumventricular organ. Meninges
Coculture Techniques
Deoxyglucose - pharmacokinetics
Endothelium, Vascular - cytology
Endothelium, Vascular - metabolism
Epilepsy
Fetus
Fundamental and applied biological sciences. Psychology
Glucose - metabolism
Glucose Transporter Type 1
GLUT-1
hexokinase
Hexokinase - metabolism
Immunohistochemistry
In vitro models
Membranes, Artificial
Monosaccharide Transport Proteins - drug effects
Monosaccharide Transport Proteins - metabolism
Phenotype
Rats
Tight junctions
Vertebrates: nervous system and sense organs
title Mechanisms of glucose transport at the blood–brain barrier: an in vitro study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T18%3A14%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20of%20glucose%20transport%20at%20the%20blood%E2%80%93brain%20barrier:%20an%20in%20vitro%20study&rft.jtitle=Brain%20research&rft.au=McAllister,%20Mark%20S&rft.date=2001-06-15&rft.volume=904&rft.issue=1&rft.spage=20&rft.epage=30&rft.pages=20-30&rft.issn=0006-8993&rft.eissn=1872-6240&rft.coden=BRREAP&rft_id=info:doi/10.1016/S0006-8993(01)02418-0&rft_dat=%3Cproquest_cross%3E71113092%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18079286&rft_id=info:pmid/11516408&rft_els_id=S0006899301024180&rfr_iscdi=true