Mechanisms of glucose transport at the blood–brain barrier: an in vitro study
How the brain meets its continuous high metabolic demand in light of varying plasma glucose levels and a functional blood–brain barrier (BBB) is poorly understood. GLUT-1, found in high density at the BBB appears to maintain the continuous shuttling of glucose across the blood–brain barrier irrespec...
Gespeichert in:
Veröffentlicht in: | Brain research 2001-06, Vol.904 (1), p.20-30 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 30 |
---|---|
container_issue | 1 |
container_start_page | 20 |
container_title | Brain research |
container_volume | 904 |
creator | McAllister, Mark S Krizanac-Bengez, Ljiljana Macchia, Francesco Naftalin, Richard J Pedley, Kevin C Mayberg, Marc R Marroni, Matteo Leaman, Susan Stanness, Kathe A Janigro, Damir |
description | How the brain meets its continuous high metabolic demand in light of varying plasma glucose levels and a functional blood–brain barrier (BBB) is poorly understood. GLUT-1, found in high density at the BBB appears to maintain the continuous shuttling of glucose across the blood–brain barrier irrespective of the plasma concentration. We examined the process of glucose transport across a quasi-physiological in vitro blood–brain barrier model. Radiolabeled tracer permeability studies revealed a concentration ratio of abluminal to luminal glucose in this blood–brain barrier model of approximately 0.85. Under conditions where [glucose]
lumen was higher than [glucose]
ablumen, influx of radiolabeled 2-deoxyglucose from lumen to the abluminal compartment was approximately 35% higher than efflux from the abluminal side to the lumen. However, when compartmental [glucose] were maintained equal, a reversal of this trend was seen (approximately 19% higher efflux towards the lumen), favoring establishment of a luminal to abluminal concentration gradient. Immunocytochemical experiments revealed that in addition to segregation of GLUT-1 (luminal>abluminal), the intracellular enzyme hexokinase was also asymmetrically distributed (abluminal>luminal). We conclude that glucose transport at the CNS/blood interface appears to be dependent on and regulated by a serial chain of membrane-bound and intracellular transporters and enzymes. |
doi_str_mv | 10.1016/S0006-8993(01)02418-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71113092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006899301024180</els_id><sourcerecordid>71113092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-9f2675b0e7b6bb1ba59ee9c1f026e50d951237fbda92af9a0a47ca291424aec63</originalsourceid><addsrcrecordid>eNqFkMtuFDEQRS0EIpPAJ4C8AYVFhyr309kgFPGSgrIA1lbZXU2MetqD7Y6UXf6BP-RL0pMZJcusSiWde6t0hHiFcIKAzfsfANAUndblMeA7UBV2BTwRK-xaVTSqgqdidY8ciMOU_ixrWWp4Lg4Qa2wq6Fbi4ju7S5p8WicZBvl7nF1ILHOkKW1CzJKyzJcs7RhC___mn43kJ2kpRs_xVNIkl_XK5xhkynN__UI8G2hM_HI_j8Svz59-nn0tzi--fDv7eF64uoJc6EE1bW2BW9tYi5ZqzawdDqAarqHXNaqyHWxPWtGgCahqHSmNlaqIXVMeibe73k0Mf2dO2ax9cjyONHGYk2kRsQStHgWxg1arbttY70AXQ0qRB7OJfk3x2iCYrXJzp9xsfRpAc6fcwJJ7vT8w2zX3D6m94wV4swcoORqHRa3z6YGroK2V3hZ92HG8eLta9JrkPE-Oex_ZZdMH_8grt0kqnjk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18079286</pqid></control><display><type>article</type><title>Mechanisms of glucose transport at the blood–brain barrier: an in vitro study</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>McAllister, Mark S ; Krizanac-Bengez, Ljiljana ; Macchia, Francesco ; Naftalin, Richard J ; Pedley, Kevin C ; Mayberg, Marc R ; Marroni, Matteo ; Leaman, Susan ; Stanness, Kathe A ; Janigro, Damir</creator><creatorcontrib>McAllister, Mark S ; Krizanac-Bengez, Ljiljana ; Macchia, Francesco ; Naftalin, Richard J ; Pedley, Kevin C ; Mayberg, Marc R ; Marroni, Matteo ; Leaman, Susan ; Stanness, Kathe A ; Janigro, Damir</creatorcontrib><description>How the brain meets its continuous high metabolic demand in light of varying plasma glucose levels and a functional blood–brain barrier (BBB) is poorly understood. GLUT-1, found in high density at the BBB appears to maintain the continuous shuttling of glucose across the blood–brain barrier irrespective of the plasma concentration. We examined the process of glucose transport across a quasi-physiological in vitro blood–brain barrier model. Radiolabeled tracer permeability studies revealed a concentration ratio of abluminal to luminal glucose in this blood–brain barrier model of approximately 0.85. Under conditions where [glucose]
lumen was higher than [glucose]
ablumen, influx of radiolabeled 2-deoxyglucose from lumen to the abluminal compartment was approximately 35% higher than efflux from the abluminal side to the lumen. However, when compartmental [glucose] were maintained equal, a reversal of this trend was seen (approximately 19% higher efflux towards the lumen), favoring establishment of a luminal to abluminal concentration gradient. Immunocytochemical experiments revealed that in addition to segregation of GLUT-1 (luminal>abluminal), the intracellular enzyme hexokinase was also asymmetrically distributed (abluminal>luminal). We conclude that glucose transport at the CNS/blood interface appears to be dependent on and regulated by a serial chain of membrane-bound and intracellular transporters and enzymes.</description><identifier>ISSN: 0006-8993</identifier><identifier>EISSN: 1872-6240</identifier><identifier>DOI: 10.1016/S0006-8993(01)02418-0</identifier><identifier>PMID: 11516408</identifier><identifier>CODEN: BRREAP</identifier><language>eng</language><publisher>London: Elsevier B.V</publisher><subject>Animals ; Astrocytes - cytology ; Astrocytes - metabolism ; Biological and medical sciences ; Blood-Brain Barrier - drug effects ; Blood-Brain Barrier - physiology ; Brain metabolism ; Carbon Radioisotopes - pharmacokinetics ; Cattle ; Cell Compartmentation - drug effects ; Cell Compartmentation - physiology ; Cell Differentiation - physiology ; Cell Membrane - drug effects ; Cell Membrane - metabolism ; Cell Membrane Permeability - physiology ; Cells, Cultured ; Cerebral circulation. Blood-brain barrier. Choroid plexus. Cerebrospinal fluid. Circumventricular organ. Meninges ; Coculture Techniques ; Deoxyglucose - pharmacokinetics ; Endothelium, Vascular - cytology ; Endothelium, Vascular - metabolism ; Epilepsy ; Fetus ; Fundamental and applied biological sciences. Psychology ; Glucose - metabolism ; Glucose Transporter Type 1 ; GLUT-1 ; hexokinase ; Hexokinase - metabolism ; Immunohistochemistry ; In vitro models ; Membranes, Artificial ; Monosaccharide Transport Proteins - drug effects ; Monosaccharide Transport Proteins - metabolism ; Phenotype ; Rats ; Tight junctions ; Vertebrates: nervous system and sense organs</subject><ispartof>Brain research, 2001-06, Vol.904 (1), p.20-30</ispartof><rights>2001</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-9f2675b0e7b6bb1ba59ee9c1f026e50d951237fbda92af9a0a47ca291424aec63</citedby><cites>FETCH-LOGICAL-c540t-9f2675b0e7b6bb1ba59ee9c1f026e50d951237fbda92af9a0a47ca291424aec63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006899301024180$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14075290$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11516408$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McAllister, Mark S</creatorcontrib><creatorcontrib>Krizanac-Bengez, Ljiljana</creatorcontrib><creatorcontrib>Macchia, Francesco</creatorcontrib><creatorcontrib>Naftalin, Richard J</creatorcontrib><creatorcontrib>Pedley, Kevin C</creatorcontrib><creatorcontrib>Mayberg, Marc R</creatorcontrib><creatorcontrib>Marroni, Matteo</creatorcontrib><creatorcontrib>Leaman, Susan</creatorcontrib><creatorcontrib>Stanness, Kathe A</creatorcontrib><creatorcontrib>Janigro, Damir</creatorcontrib><title>Mechanisms of glucose transport at the blood–brain barrier: an in vitro study</title><title>Brain research</title><addtitle>Brain Res</addtitle><description>How the brain meets its continuous high metabolic demand in light of varying plasma glucose levels and a functional blood–brain barrier (BBB) is poorly understood. GLUT-1, found in high density at the BBB appears to maintain the continuous shuttling of glucose across the blood–brain barrier irrespective of the plasma concentration. We examined the process of glucose transport across a quasi-physiological in vitro blood–brain barrier model. Radiolabeled tracer permeability studies revealed a concentration ratio of abluminal to luminal glucose in this blood–brain barrier model of approximately 0.85. Under conditions where [glucose]
lumen was higher than [glucose]
ablumen, influx of radiolabeled 2-deoxyglucose from lumen to the abluminal compartment was approximately 35% higher than efflux from the abluminal side to the lumen. However, when compartmental [glucose] were maintained equal, a reversal of this trend was seen (approximately 19% higher efflux towards the lumen), favoring establishment of a luminal to abluminal concentration gradient. Immunocytochemical experiments revealed that in addition to segregation of GLUT-1 (luminal>abluminal), the intracellular enzyme hexokinase was also asymmetrically distributed (abluminal>luminal). We conclude that glucose transport at the CNS/blood interface appears to be dependent on and regulated by a serial chain of membrane-bound and intracellular transporters and enzymes.</description><subject>Animals</subject><subject>Astrocytes - cytology</subject><subject>Astrocytes - metabolism</subject><subject>Biological and medical sciences</subject><subject>Blood-Brain Barrier - drug effects</subject><subject>Blood-Brain Barrier - physiology</subject><subject>Brain metabolism</subject><subject>Carbon Radioisotopes - pharmacokinetics</subject><subject>Cattle</subject><subject>Cell Compartmentation - drug effects</subject><subject>Cell Compartmentation - physiology</subject><subject>Cell Differentiation - physiology</subject><subject>Cell Membrane - drug effects</subject><subject>Cell Membrane - metabolism</subject><subject>Cell Membrane Permeability - physiology</subject><subject>Cells, Cultured</subject><subject>Cerebral circulation. Blood-brain barrier. Choroid plexus. Cerebrospinal fluid. Circumventricular organ. Meninges</subject><subject>Coculture Techniques</subject><subject>Deoxyglucose - pharmacokinetics</subject><subject>Endothelium, Vascular - cytology</subject><subject>Endothelium, Vascular - metabolism</subject><subject>Epilepsy</subject><subject>Fetus</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glucose - metabolism</subject><subject>Glucose Transporter Type 1</subject><subject>GLUT-1</subject><subject>hexokinase</subject><subject>Hexokinase - metabolism</subject><subject>Immunohistochemistry</subject><subject>In vitro models</subject><subject>Membranes, Artificial</subject><subject>Monosaccharide Transport Proteins - drug effects</subject><subject>Monosaccharide Transport Proteins - metabolism</subject><subject>Phenotype</subject><subject>Rats</subject><subject>Tight junctions</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0006-8993</issn><issn>1872-6240</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtuFDEQRS0EIpPAJ4C8AYVFhyr309kgFPGSgrIA1lbZXU2MetqD7Y6UXf6BP-RL0pMZJcusSiWde6t0hHiFcIKAzfsfANAUndblMeA7UBV2BTwRK-xaVTSqgqdidY8ciMOU_ixrWWp4Lg4Qa2wq6Fbi4ju7S5p8WicZBvl7nF1ILHOkKW1CzJKyzJcs7RhC___mn43kJ2kpRs_xVNIkl_XK5xhkynN__UI8G2hM_HI_j8Svz59-nn0tzi--fDv7eF64uoJc6EE1bW2BW9tYi5ZqzawdDqAarqHXNaqyHWxPWtGgCahqHSmNlaqIXVMeibe73k0Mf2dO2ax9cjyONHGYk2kRsQStHgWxg1arbttY70AXQ0qRB7OJfk3x2iCYrXJzp9xsfRpAc6fcwJJ7vT8w2zX3D6m94wV4swcoORqHRa3z6YGroK2V3hZ92HG8eLta9JrkPE-Oex_ZZdMH_8grt0kqnjk</recordid><startdate>20010615</startdate><enddate>20010615</enddate><creator>McAllister, Mark S</creator><creator>Krizanac-Bengez, Ljiljana</creator><creator>Macchia, Francesco</creator><creator>Naftalin, Richard J</creator><creator>Pedley, Kevin C</creator><creator>Mayberg, Marc R</creator><creator>Marroni, Matteo</creator><creator>Leaman, Susan</creator><creator>Stanness, Kathe A</creator><creator>Janigro, Damir</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20010615</creationdate><title>Mechanisms of glucose transport at the blood–brain barrier: an in vitro study</title><author>McAllister, Mark S ; Krizanac-Bengez, Ljiljana ; Macchia, Francesco ; Naftalin, Richard J ; Pedley, Kevin C ; Mayberg, Marc R ; Marroni, Matteo ; Leaman, Susan ; Stanness, Kathe A ; Janigro, Damir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-9f2675b0e7b6bb1ba59ee9c1f026e50d951237fbda92af9a0a47ca291424aec63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Animals</topic><topic>Astrocytes - cytology</topic><topic>Astrocytes - metabolism</topic><topic>Biological and medical sciences</topic><topic>Blood-Brain Barrier - drug effects</topic><topic>Blood-Brain Barrier - physiology</topic><topic>Brain metabolism</topic><topic>Carbon Radioisotopes - pharmacokinetics</topic><topic>Cattle</topic><topic>Cell Compartmentation - drug effects</topic><topic>Cell Compartmentation - physiology</topic><topic>Cell Differentiation - physiology</topic><topic>Cell Membrane - drug effects</topic><topic>Cell Membrane - metabolism</topic><topic>Cell Membrane Permeability - physiology</topic><topic>Cells, Cultured</topic><topic>Cerebral circulation. Blood-brain barrier. Choroid plexus. Cerebrospinal fluid. Circumventricular organ. Meninges</topic><topic>Coculture Techniques</topic><topic>Deoxyglucose - pharmacokinetics</topic><topic>Endothelium, Vascular - cytology</topic><topic>Endothelium, Vascular - metabolism</topic><topic>Epilepsy</topic><topic>Fetus</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glucose - metabolism</topic><topic>Glucose Transporter Type 1</topic><topic>GLUT-1</topic><topic>hexokinase</topic><topic>Hexokinase - metabolism</topic><topic>Immunohistochemistry</topic><topic>In vitro models</topic><topic>Membranes, Artificial</topic><topic>Monosaccharide Transport Proteins - drug effects</topic><topic>Monosaccharide Transport Proteins - metabolism</topic><topic>Phenotype</topic><topic>Rats</topic><topic>Tight junctions</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McAllister, Mark S</creatorcontrib><creatorcontrib>Krizanac-Bengez, Ljiljana</creatorcontrib><creatorcontrib>Macchia, Francesco</creatorcontrib><creatorcontrib>Naftalin, Richard J</creatorcontrib><creatorcontrib>Pedley, Kevin C</creatorcontrib><creatorcontrib>Mayberg, Marc R</creatorcontrib><creatorcontrib>Marroni, Matteo</creatorcontrib><creatorcontrib>Leaman, Susan</creatorcontrib><creatorcontrib>Stanness, Kathe A</creatorcontrib><creatorcontrib>Janigro, Damir</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Brain research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McAllister, Mark S</au><au>Krizanac-Bengez, Ljiljana</au><au>Macchia, Francesco</au><au>Naftalin, Richard J</au><au>Pedley, Kevin C</au><au>Mayberg, Marc R</au><au>Marroni, Matteo</au><au>Leaman, Susan</au><au>Stanness, Kathe A</au><au>Janigro, Damir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms of glucose transport at the blood–brain barrier: an in vitro study</atitle><jtitle>Brain research</jtitle><addtitle>Brain Res</addtitle><date>2001-06-15</date><risdate>2001</risdate><volume>904</volume><issue>1</issue><spage>20</spage><epage>30</epage><pages>20-30</pages><issn>0006-8993</issn><eissn>1872-6240</eissn><coden>BRREAP</coden><abstract>How the brain meets its continuous high metabolic demand in light of varying plasma glucose levels and a functional blood–brain barrier (BBB) is poorly understood. GLUT-1, found in high density at the BBB appears to maintain the continuous shuttling of glucose across the blood–brain barrier irrespective of the plasma concentration. We examined the process of glucose transport across a quasi-physiological in vitro blood–brain barrier model. Radiolabeled tracer permeability studies revealed a concentration ratio of abluminal to luminal glucose in this blood–brain barrier model of approximately 0.85. Under conditions where [glucose]
lumen was higher than [glucose]
ablumen, influx of radiolabeled 2-deoxyglucose from lumen to the abluminal compartment was approximately 35% higher than efflux from the abluminal side to the lumen. However, when compartmental [glucose] were maintained equal, a reversal of this trend was seen (approximately 19% higher efflux towards the lumen), favoring establishment of a luminal to abluminal concentration gradient. Immunocytochemical experiments revealed that in addition to segregation of GLUT-1 (luminal>abluminal), the intracellular enzyme hexokinase was also asymmetrically distributed (abluminal>luminal). We conclude that glucose transport at the CNS/blood interface appears to be dependent on and regulated by a serial chain of membrane-bound and intracellular transporters and enzymes.</abstract><cop>London</cop><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><pmid>11516408</pmid><doi>10.1016/S0006-8993(01)02418-0</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-8993 |
ispartof | Brain research, 2001-06, Vol.904 (1), p.20-30 |
issn | 0006-8993 1872-6240 |
language | eng |
recordid | cdi_proquest_miscellaneous_71113092 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Animals Astrocytes - cytology Astrocytes - metabolism Biological and medical sciences Blood-Brain Barrier - drug effects Blood-Brain Barrier - physiology Brain metabolism Carbon Radioisotopes - pharmacokinetics Cattle Cell Compartmentation - drug effects Cell Compartmentation - physiology Cell Differentiation - physiology Cell Membrane - drug effects Cell Membrane - metabolism Cell Membrane Permeability - physiology Cells, Cultured Cerebral circulation. Blood-brain barrier. Choroid plexus. Cerebrospinal fluid. Circumventricular organ. Meninges Coculture Techniques Deoxyglucose - pharmacokinetics Endothelium, Vascular - cytology Endothelium, Vascular - metabolism Epilepsy Fetus Fundamental and applied biological sciences. Psychology Glucose - metabolism Glucose Transporter Type 1 GLUT-1 hexokinase Hexokinase - metabolism Immunohistochemistry In vitro models Membranes, Artificial Monosaccharide Transport Proteins - drug effects Monosaccharide Transport Proteins - metabolism Phenotype Rats Tight junctions Vertebrates: nervous system and sense organs |
title | Mechanisms of glucose transport at the blood–brain barrier: an in vitro study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T18%3A14%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20of%20glucose%20transport%20at%20the%20blood%E2%80%93brain%20barrier:%20an%20in%20vitro%20study&rft.jtitle=Brain%20research&rft.au=McAllister,%20Mark%20S&rft.date=2001-06-15&rft.volume=904&rft.issue=1&rft.spage=20&rft.epage=30&rft.pages=20-30&rft.issn=0006-8993&rft.eissn=1872-6240&rft.coden=BRREAP&rft_id=info:doi/10.1016/S0006-8993(01)02418-0&rft_dat=%3Cproquest_cross%3E71113092%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18079286&rft_id=info:pmid/11516408&rft_els_id=S0006899301024180&rfr_iscdi=true |