Linkage of chondroitin-sulfate to type I collagen scaffolds stimulates the bioactivity of seeded chondrocytes in vitro
An increasing amount of interest is focused on the potential use of tissue-engineered articular cartilage implants, for repair of defects in the joint surface. In this perspective, various biodegradable scaffolds have been evaluated as a vehicle to deliver chondrocytes into a cartilage defect. This...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2001-09, Vol.22 (17), p.2359-2369 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2369 |
---|---|
container_issue | 17 |
container_start_page | 2359 |
container_title | Biomaterials |
container_volume | 22 |
creator | van Susante, Job L.C Pieper, Jeroen Buma, Pieter van Kuppevelt, Toin H van Beuningen, Henk van der Kraan, Peter M Veerkamp, Jacques H van den Berg, Wim B Veth, René P.H |
description | An increasing amount of interest is focused on the potential use of tissue-engineered articular cartilage implants, for repair of defects in the joint surface. In this perspective, various biodegradable scaffolds have been evaluated as a vehicle to deliver chondrocytes into a cartilage defect. This cell–matrix implant should eventually promote regeneration of the traumatized articular joint surface with hyaline cartilage. Successful regeneration can only be achieved with such a tissue-engineered cartilage implant if the seeded cells reveal an appropriate proliferation rate in the biodegradable scaffold together with the production of a new cartilage-specific extracellular matrix. These metabolic parameters can be influenced by the biochemical composition of a cell-delivery scaffold. Further elucidation of specific cell–matrix interactions is important to define the optimal biochemical composition of a cell-delivery vehicle for cartilage repair. In this in vitro study, we investigated the effect of the presence of cartilage-specific glycosaminoglycans in a type I collagen scaffold on the metabolic activity of seeded chondrocytes. Isolated bovine chondrocytes were cultured in porous type I collagen matrices in the presence and absence of covalently attached chondroitin sulfate (CS) up to 14 days. CS did indeed influence the bioactivity of the seeded chondrocytes. Cell proliferation and the total amount of proteoglycans retained in the matrix, were significantly higher (
p |
doi_str_mv | 10.1016/S0142-9612(00)00423-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71102730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961200004233</els_id><sourcerecordid>71102730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c539t-c35cbe14323d63dfe8e79d5d903df9c4b52362950c8ea822529e50b6b8b6e3373</originalsourceid><addsrcrecordid>eNqF0c9PHCEUB3DS2NTV9k-w4WCMPYx9wDA_TsZstDXZxIP2TBh4U6mzwwrMJvvfy7pr25sn8sKHB7wvIScMLhiw6vs9sJIXbcX4OcA3gJKLQnwgM9bUTSFbkAdk9pcckqMY_0Cus_tEDhmTjIEQM7JeuPFJ_0bqe2oe_WiDd8mNRZyGXiekydO0WSG9pcYPQ4YjjUb3vR9spDG55TRkFml6RNo5r01ya5c223YR0aJ962o2W-ZGmreD_0w-9nqI-GW_HpNfN9cP85_F4u7H7fxqURgp2lQYIU2HrBRc2ErYHhusWyttC7loTdlJLireSjAN6oZzyVuU0FVd01UoRC2Oydmu7yr45wljUksXDeafjOinqOo8Bl4LeBfyqm5YWTYZyh00wccYsFer4JY6bBQDtU1GvSajtmNXAOo1GSXyua_7C6ZuifbfqX0UGZzugc4THvqgR-Pif45Dzjazyx3DPLa1w6CicTgatC6gScp6985LXgDS76t3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26781448</pqid></control><display><type>article</type><title>Linkage of chondroitin-sulfate to type I collagen scaffolds stimulates the bioactivity of seeded chondrocytes in vitro</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>van Susante, Job L.C ; Pieper, Jeroen ; Buma, Pieter ; van Kuppevelt, Toin H ; van Beuningen, Henk ; van der Kraan, Peter M ; Veerkamp, Jacques H ; van den Berg, Wim B ; Veth, René P.H</creator><creatorcontrib>van Susante, Job L.C ; Pieper, Jeroen ; Buma, Pieter ; van Kuppevelt, Toin H ; van Beuningen, Henk ; van der Kraan, Peter M ; Veerkamp, Jacques H ; van den Berg, Wim B ; Veth, René P.H</creatorcontrib><description>An increasing amount of interest is focused on the potential use of tissue-engineered articular cartilage implants, for repair of defects in the joint surface. In this perspective, various biodegradable scaffolds have been evaluated as a vehicle to deliver chondrocytes into a cartilage defect. This cell–matrix implant should eventually promote regeneration of the traumatized articular joint surface with hyaline cartilage. Successful regeneration can only be achieved with such a tissue-engineered cartilage implant if the seeded cells reveal an appropriate proliferation rate in the biodegradable scaffold together with the production of a new cartilage-specific extracellular matrix. These metabolic parameters can be influenced by the biochemical composition of a cell-delivery scaffold. Further elucidation of specific cell–matrix interactions is important to define the optimal biochemical composition of a cell-delivery vehicle for cartilage repair. In this in vitro study, we investigated the effect of the presence of cartilage-specific glycosaminoglycans in a type I collagen scaffold on the metabolic activity of seeded chondrocytes. Isolated bovine chondrocytes were cultured in porous type I collagen matrices in the presence and absence of covalently attached chondroitin sulfate (CS) up to 14 days. CS did indeed influence the bioactivity of the seeded chondrocytes. Cell proliferation and the total amount of proteoglycans retained in the matrix, were significantly higher (
p<0.001) in type I collagen scaffolds with CS. Light microscopy showed the formation of a more dense cartilaginous layer at the matrix periphery. Scanning electron microscopy revealed an almost complete surfacing of the initially porous surface of both matrices. Histology and reverse transcriptase PCR for various proteoglycan subtypes suggested a good preservation of the chondrocytic phenotype of the seeded cells during culture. The stimulatory potential of CS on both the cell-proliferation and matrix retention, turns this GAG into an interesting biochemical component of a cell-delivery scaffold for use in tissue-engineering articular cartilage.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/S0142-9612(00)00423-3</identifier><identifier>PMID: 11511033</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Animals ; Biocompatible Materials - chemistry ; Biological and medical sciences ; Cartilage, Articular - injuries ; Cartilage, Articular - physiology ; Cartilage, Articular - surgery ; Cattle ; Chondrocyte ; Chondrocytes - cytology ; Chondrocytes - metabolism ; Chondroitin Sulfates - chemistry ; Collagen Type I - chemistry ; DNA - biosynthesis ; Materials Testing ; Medical sciences ; Microscopy, Electron, Scanning ; Orthopedic surgery ; Proteoglycans - biosynthesis ; Proteoglycans - genetics ; Regeneration ; Reverse Transcriptase Polymerase Chain Reaction ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Scaffold ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Tissue Engineering ; Type I collagen</subject><ispartof>Biomaterials, 2001-09, Vol.22 (17), p.2359-2369</ispartof><rights>2001 Elsevier Science Ltd</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c539t-c35cbe14323d63dfe8e79d5d903df9c4b52362950c8ea822529e50b6b8b6e3373</citedby><cites>FETCH-LOGICAL-c539t-c35cbe14323d63dfe8e79d5d903df9c4b52362950c8ea822529e50b6b8b6e3373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142961200004233$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1120187$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11511033$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van Susante, Job L.C</creatorcontrib><creatorcontrib>Pieper, Jeroen</creatorcontrib><creatorcontrib>Buma, Pieter</creatorcontrib><creatorcontrib>van Kuppevelt, Toin H</creatorcontrib><creatorcontrib>van Beuningen, Henk</creatorcontrib><creatorcontrib>van der Kraan, Peter M</creatorcontrib><creatorcontrib>Veerkamp, Jacques H</creatorcontrib><creatorcontrib>van den Berg, Wim B</creatorcontrib><creatorcontrib>Veth, René P.H</creatorcontrib><title>Linkage of chondroitin-sulfate to type I collagen scaffolds stimulates the bioactivity of seeded chondrocytes in vitro</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>An increasing amount of interest is focused on the potential use of tissue-engineered articular cartilage implants, for repair of defects in the joint surface. In this perspective, various biodegradable scaffolds have been evaluated as a vehicle to deliver chondrocytes into a cartilage defect. This cell–matrix implant should eventually promote regeneration of the traumatized articular joint surface with hyaline cartilage. Successful regeneration can only be achieved with such a tissue-engineered cartilage implant if the seeded cells reveal an appropriate proliferation rate in the biodegradable scaffold together with the production of a new cartilage-specific extracellular matrix. These metabolic parameters can be influenced by the biochemical composition of a cell-delivery scaffold. Further elucidation of specific cell–matrix interactions is important to define the optimal biochemical composition of a cell-delivery vehicle for cartilage repair. In this in vitro study, we investigated the effect of the presence of cartilage-specific glycosaminoglycans in a type I collagen scaffold on the metabolic activity of seeded chondrocytes. Isolated bovine chondrocytes were cultured in porous type I collagen matrices in the presence and absence of covalently attached chondroitin sulfate (CS) up to 14 days. CS did indeed influence the bioactivity of the seeded chondrocytes. Cell proliferation and the total amount of proteoglycans retained in the matrix, were significantly higher (
p<0.001) in type I collagen scaffolds with CS. Light microscopy showed the formation of a more dense cartilaginous layer at the matrix periphery. Scanning electron microscopy revealed an almost complete surfacing of the initially porous surface of both matrices. Histology and reverse transcriptase PCR for various proteoglycan subtypes suggested a good preservation of the chondrocytic phenotype of the seeded cells during culture. The stimulatory potential of CS on both the cell-proliferation and matrix retention, turns this GAG into an interesting biochemical component of a cell-delivery scaffold for use in tissue-engineering articular cartilage.</description><subject>Animals</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biological and medical sciences</subject><subject>Cartilage, Articular - injuries</subject><subject>Cartilage, Articular - physiology</subject><subject>Cartilage, Articular - surgery</subject><subject>Cattle</subject><subject>Chondrocyte</subject><subject>Chondrocytes - cytology</subject><subject>Chondrocytes - metabolism</subject><subject>Chondroitin Sulfates - chemistry</subject><subject>Collagen Type I - chemistry</subject><subject>DNA - biosynthesis</subject><subject>Materials Testing</subject><subject>Medical sciences</subject><subject>Microscopy, Electron, Scanning</subject><subject>Orthopedic surgery</subject><subject>Proteoglycans - biosynthesis</subject><subject>Proteoglycans - genetics</subject><subject>Regeneration</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Scaffold</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Tissue Engineering</subject><subject>Type I collagen</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c9PHCEUB3DS2NTV9k-w4WCMPYx9wDA_TsZstDXZxIP2TBh4U6mzwwrMJvvfy7pr25sn8sKHB7wvIScMLhiw6vs9sJIXbcX4OcA3gJKLQnwgM9bUTSFbkAdk9pcckqMY_0Cus_tEDhmTjIEQM7JeuPFJ_0bqe2oe_WiDd8mNRZyGXiekydO0WSG9pcYPQ4YjjUb3vR9spDG55TRkFml6RNo5r01ya5c223YR0aJ962o2W-ZGmreD_0w-9nqI-GW_HpNfN9cP85_F4u7H7fxqURgp2lQYIU2HrBRc2ErYHhusWyttC7loTdlJLireSjAN6oZzyVuU0FVd01UoRC2Oydmu7yr45wljUksXDeafjOinqOo8Bl4LeBfyqm5YWTYZyh00wccYsFer4JY6bBQDtU1GvSajtmNXAOo1GSXyua_7C6ZuifbfqX0UGZzugc4THvqgR-Pif45Dzjazyx3DPLa1w6CicTgatC6gScp6985LXgDS76t3</recordid><startdate>20010901</startdate><enddate>20010901</enddate><creator>van Susante, Job L.C</creator><creator>Pieper, Jeroen</creator><creator>Buma, Pieter</creator><creator>van Kuppevelt, Toin H</creator><creator>van Beuningen, Henk</creator><creator>van der Kraan, Peter M</creator><creator>Veerkamp, Jacques H</creator><creator>van den Berg, Wim B</creator><creator>Veth, René P.H</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope></search><sort><creationdate>20010901</creationdate><title>Linkage of chondroitin-sulfate to type I collagen scaffolds stimulates the bioactivity of seeded chondrocytes in vitro</title><author>van Susante, Job L.C ; Pieper, Jeroen ; Buma, Pieter ; van Kuppevelt, Toin H ; van Beuningen, Henk ; van der Kraan, Peter M ; Veerkamp, Jacques H ; van den Berg, Wim B ; Veth, René P.H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c539t-c35cbe14323d63dfe8e79d5d903df9c4b52362950c8ea822529e50b6b8b6e3373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Animals</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biological and medical sciences</topic><topic>Cartilage, Articular - injuries</topic><topic>Cartilage, Articular - physiology</topic><topic>Cartilage, Articular - surgery</topic><topic>Cattle</topic><topic>Chondrocyte</topic><topic>Chondrocytes - cytology</topic><topic>Chondrocytes - metabolism</topic><topic>Chondroitin Sulfates - chemistry</topic><topic>Collagen Type I - chemistry</topic><topic>DNA - biosynthesis</topic><topic>Materials Testing</topic><topic>Medical sciences</topic><topic>Microscopy, Electron, Scanning</topic><topic>Orthopedic surgery</topic><topic>Proteoglycans - biosynthesis</topic><topic>Proteoglycans - genetics</topic><topic>Regeneration</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Scaffold</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Tissue Engineering</topic><topic>Type I collagen</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Susante, Job L.C</creatorcontrib><creatorcontrib>Pieper, Jeroen</creatorcontrib><creatorcontrib>Buma, Pieter</creatorcontrib><creatorcontrib>van Kuppevelt, Toin H</creatorcontrib><creatorcontrib>van Beuningen, Henk</creatorcontrib><creatorcontrib>van der Kraan, Peter M</creatorcontrib><creatorcontrib>Veerkamp, Jacques H</creatorcontrib><creatorcontrib>van den Berg, Wim B</creatorcontrib><creatorcontrib>Veth, René P.H</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Susante, Job L.C</au><au>Pieper, Jeroen</au><au>Buma, Pieter</au><au>van Kuppevelt, Toin H</au><au>van Beuningen, Henk</au><au>van der Kraan, Peter M</au><au>Veerkamp, Jacques H</au><au>van den Berg, Wim B</au><au>Veth, René P.H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linkage of chondroitin-sulfate to type I collagen scaffolds stimulates the bioactivity of seeded chondrocytes in vitro</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2001-09-01</date><risdate>2001</risdate><volume>22</volume><issue>17</issue><spage>2359</spage><epage>2369</epage><pages>2359-2369</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>An increasing amount of interest is focused on the potential use of tissue-engineered articular cartilage implants, for repair of defects in the joint surface. In this perspective, various biodegradable scaffolds have been evaluated as a vehicle to deliver chondrocytes into a cartilage defect. This cell–matrix implant should eventually promote regeneration of the traumatized articular joint surface with hyaline cartilage. Successful regeneration can only be achieved with such a tissue-engineered cartilage implant if the seeded cells reveal an appropriate proliferation rate in the biodegradable scaffold together with the production of a new cartilage-specific extracellular matrix. These metabolic parameters can be influenced by the biochemical composition of a cell-delivery scaffold. Further elucidation of specific cell–matrix interactions is important to define the optimal biochemical composition of a cell-delivery vehicle for cartilage repair. In this in vitro study, we investigated the effect of the presence of cartilage-specific glycosaminoglycans in a type I collagen scaffold on the metabolic activity of seeded chondrocytes. Isolated bovine chondrocytes were cultured in porous type I collagen matrices in the presence and absence of covalently attached chondroitin sulfate (CS) up to 14 days. CS did indeed influence the bioactivity of the seeded chondrocytes. Cell proliferation and the total amount of proteoglycans retained in the matrix, were significantly higher (
p<0.001) in type I collagen scaffolds with CS. Light microscopy showed the formation of a more dense cartilaginous layer at the matrix periphery. Scanning electron microscopy revealed an almost complete surfacing of the initially porous surface of both matrices. Histology and reverse transcriptase PCR for various proteoglycan subtypes suggested a good preservation of the chondrocytic phenotype of the seeded cells during culture. The stimulatory potential of CS on both the cell-proliferation and matrix retention, turns this GAG into an interesting biochemical component of a cell-delivery scaffold for use in tissue-engineering articular cartilage.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>11511033</pmid><doi>10.1016/S0142-9612(00)00423-3</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2001-09, Vol.22 (17), p.2359-2369 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_71102730 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Animals Biocompatible Materials - chemistry Biological and medical sciences Cartilage, Articular - injuries Cartilage, Articular - physiology Cartilage, Articular - surgery Cattle Chondrocyte Chondrocytes - cytology Chondrocytes - metabolism Chondroitin Sulfates - chemistry Collagen Type I - chemistry DNA - biosynthesis Materials Testing Medical sciences Microscopy, Electron, Scanning Orthopedic surgery Proteoglycans - biosynthesis Proteoglycans - genetics Regeneration Reverse Transcriptase Polymerase Chain Reaction RNA, Messenger - genetics RNA, Messenger - metabolism Scaffold Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases Tissue Engineering Type I collagen |
title | Linkage of chondroitin-sulfate to type I collagen scaffolds stimulates the bioactivity of seeded chondrocytes in vitro |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A08%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linkage%20of%20chondroitin-sulfate%20to%20type%20I%20collagen%20scaffolds%20stimulates%20the%20bioactivity%20of%20seeded%20chondrocytes%20in%20vitro&rft.jtitle=Biomaterials&rft.au=van%20Susante,%20Job%20L.C&rft.date=2001-09-01&rft.volume=22&rft.issue=17&rft.spage=2359&rft.epage=2369&rft.pages=2359-2369&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/S0142-9612(00)00423-3&rft_dat=%3Cproquest_cross%3E71102730%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26781448&rft_id=info:pmid/11511033&rft_els_id=S0142961200004233&rfr_iscdi=true |