Thermally Assisted Infrared Multiphoton Photodissociation in a Quadrupole Ion Trap
Thermally assisted infrared multiphoton photodissociation (TA-IRMPD) provides an effective means to dissociate ions in the quadrupole ion trap mass spectrometer (QITMS) without detrimentally affecting the performance of the instrument. IRMPD can offer advantages over collision-induced dissociation (...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2001-08, Vol.73 (15), p.3542-3548 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3548 |
---|---|
container_issue | 15 |
container_start_page | 3542 |
container_title | Analytical chemistry (Washington) |
container_volume | 73 |
creator | Payne, Anne H Glish, Gary L |
description | Thermally assisted infrared multiphoton photodissociation (TA-IRMPD) provides an effective means to dissociate ions in the quadrupole ion trap mass spectrometer (QITMS) without detrimentally affecting the performance of the instrument. IRMPD can offer advantages over collision-induced dissociation (CID). However, collisions with the QITMS bath gas at the standard pressure and ambient temperature cause IR-irradiated ions to lose energy faster than photons can be absorbed to induce dissociation. The low pressure required for IRMPD (≤10-5 Torr) is not that required for optimal performance of the QITMS (10-3 Torr), and sensitivity and resolution suffer. TA-IRMPD is performed with the bath gas at an elevated temperature. The higher temperature of the bath gas results in less energy lost in collisions of the IR-excited ions with the bath gas. Thermal assistance allows IRMPD to be used at or near optimal pressures, which results in an ∼1 order of magnitude increase in signal intensity. Unlike CID, IRMPD allows small product ions, those less than about one-third the m/z of the parent ion, to be observed. IRMPD should also be more easily paired with fluctuating ion sources, as the corresponding fluctuations in resonant frequencies do not affect IRMPD. Finally, while IR irradiation nonselectively causes dissociation of all ions, TA-IRMPD can be made selective by using axial expansion to move ions away from the path of the laser beam. |
doi_str_mv | 10.1021/ac010245+ |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71101910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71101910</sourcerecordid><originalsourceid>FETCH-LOGICAL-a334t-7f45fede1e3f8afc027b35e30e73a41803150c1d7014b664762bbb7799fbeada3</originalsourceid><addsrcrecordid>eNplkF1L5DAUhoO46Oh64R-QIrII0t1zmrZpL0VWHVDXj1HEm3CaphjttDVpYf33ZpjREb16w8nDyzkPY9sIvxEi_EMKfMbJwQobYRJBmGZZtMpGAMDDSACssw3nngAQAdM1to6YIGSYjtj15FHbKdX1a3DonHG9LoNxU1my_nE-1L3pHtu-bYLLWZTGuVYZ6o2fmCag4Gqg0g5dW-tg7GcTS91P9qOi2umtRW6y2-O_k6PT8Ozfyfjo8CwkzuM-FFWcVLrUqHmVUaUgEgVPNActOMWYAccEFJYCMC7SNBZpVBSFEHleFZpK4pvs17y3s-3LoF0vp8YpXdfU6HZwUsyuzRE8uPsFfGoH2_jdZIQiywTnuYf255CyrXNWV7KzZkr2VSLImWX5btmjO4u-oZjqcgkurHpgbwGQU1R7m40y7lNhzpOceyycYzPt_z--yT7LVHCRyMnljYTji_sreLiXd8taUm55wrf13gB2m52l</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217887339</pqid></control><display><type>article</type><title>Thermally Assisted Infrared Multiphoton Photodissociation in a Quadrupole Ion Trap</title><source>ACS Publications</source><source>MEDLINE</source><creator>Payne, Anne H ; Glish, Gary L</creator><creatorcontrib>Payne, Anne H ; Glish, Gary L</creatorcontrib><description>Thermally assisted infrared multiphoton photodissociation (TA-IRMPD) provides an effective means to dissociate ions in the quadrupole ion trap mass spectrometer (QITMS) without detrimentally affecting the performance of the instrument. IRMPD can offer advantages over collision-induced dissociation (CID). However, collisions with the QITMS bath gas at the standard pressure and ambient temperature cause IR-irradiated ions to lose energy faster than photons can be absorbed to induce dissociation. The low pressure required for IRMPD (≤10-5 Torr) is not that required for optimal performance of the QITMS (10-3 Torr), and sensitivity and resolution suffer. TA-IRMPD is performed with the bath gas at an elevated temperature. The higher temperature of the bath gas results in less energy lost in collisions of the IR-excited ions with the bath gas. Thermal assistance allows IRMPD to be used at or near optimal pressures, which results in an ∼1 order of magnitude increase in signal intensity. Unlike CID, IRMPD allows small product ions, those less than about one-third the m/z of the parent ion, to be observed. IRMPD should also be more easily paired with fluctuating ion sources, as the corresponding fluctuations in resonant frequencies do not affect IRMPD. Finally, while IR irradiation nonselectively causes dissociation of all ions, TA-IRMPD can be made selective by using axial expansion to move ions away from the path of the laser beam.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac010245+</identifier><identifier>PMID: 11510816</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Atoms & subatomic particles ; Exact sciences and technology ; Infrared radiation ; Infrared Rays ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Ions ; Mass spectrometers and related techniques ; Mass Spectrometry ; Photons ; Physics ; Scientific imaging</subject><ispartof>Analytical chemistry (Washington), 2001-08, Vol.73 (15), p.3542-3548</ispartof><rights>Copyright © 2001 American Chemical Society</rights><rights>2001 INIST-CNRS</rights><rights>Copyright American Chemical Society Aug 1, 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a334t-7f45fede1e3f8afc027b35e30e73a41803150c1d7014b664762bbb7799fbeada3</citedby><cites>FETCH-LOGICAL-a334t-7f45fede1e3f8afc027b35e30e73a41803150c1d7014b664762bbb7799fbeada3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac010245+$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac010245+$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1093593$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11510816$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Payne, Anne H</creatorcontrib><creatorcontrib>Glish, Gary L</creatorcontrib><title>Thermally Assisted Infrared Multiphoton Photodissociation in a Quadrupole Ion Trap</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Thermally assisted infrared multiphoton photodissociation (TA-IRMPD) provides an effective means to dissociate ions in the quadrupole ion trap mass spectrometer (QITMS) without detrimentally affecting the performance of the instrument. IRMPD can offer advantages over collision-induced dissociation (CID). However, collisions with the QITMS bath gas at the standard pressure and ambient temperature cause IR-irradiated ions to lose energy faster than photons can be absorbed to induce dissociation. The low pressure required for IRMPD (≤10-5 Torr) is not that required for optimal performance of the QITMS (10-3 Torr), and sensitivity and resolution suffer. TA-IRMPD is performed with the bath gas at an elevated temperature. The higher temperature of the bath gas results in less energy lost in collisions of the IR-excited ions with the bath gas. Thermal assistance allows IRMPD to be used at or near optimal pressures, which results in an ∼1 order of magnitude increase in signal intensity. Unlike CID, IRMPD allows small product ions, those less than about one-third the m/z of the parent ion, to be observed. IRMPD should also be more easily paired with fluctuating ion sources, as the corresponding fluctuations in resonant frequencies do not affect IRMPD. Finally, while IR irradiation nonselectively causes dissociation of all ions, TA-IRMPD can be made selective by using axial expansion to move ions away from the path of the laser beam.</description><subject>Atoms & subatomic particles</subject><subject>Exact sciences and technology</subject><subject>Infrared radiation</subject><subject>Infrared Rays</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Ions</subject><subject>Mass spectrometers and related techniques</subject><subject>Mass Spectrometry</subject><subject>Photons</subject><subject>Physics</subject><subject>Scientific imaging</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNplkF1L5DAUhoO46Oh64R-QIrII0t1zmrZpL0VWHVDXj1HEm3CaphjttDVpYf33ZpjREb16w8nDyzkPY9sIvxEi_EMKfMbJwQobYRJBmGZZtMpGAMDDSACssw3nngAQAdM1to6YIGSYjtj15FHbKdX1a3DonHG9LoNxU1my_nE-1L3pHtu-bYLLWZTGuVYZ6o2fmCag4Gqg0g5dW-tg7GcTS91P9qOi2umtRW6y2-O_k6PT8Ozfyfjo8CwkzuM-FFWcVLrUqHmVUaUgEgVPNActOMWYAccEFJYCMC7SNBZpVBSFEHleFZpK4pvs17y3s-3LoF0vp8YpXdfU6HZwUsyuzRE8uPsFfGoH2_jdZIQiywTnuYf255CyrXNWV7KzZkr2VSLImWX5btmjO4u-oZjqcgkurHpgbwGQU1R7m40y7lNhzpOceyycYzPt_z--yT7LVHCRyMnljYTji_sreLiXd8taUm55wrf13gB2m52l</recordid><startdate>20010801</startdate><enddate>20010801</enddate><creator>Payne, Anne H</creator><creator>Glish, Gary L</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20010801</creationdate><title>Thermally Assisted Infrared Multiphoton Photodissociation in a Quadrupole Ion Trap</title><author>Payne, Anne H ; Glish, Gary L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a334t-7f45fede1e3f8afc027b35e30e73a41803150c1d7014b664762bbb7799fbeada3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Atoms & subatomic particles</topic><topic>Exact sciences and technology</topic><topic>Infrared radiation</topic><topic>Infrared Rays</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Ions</topic><topic>Mass spectrometers and related techniques</topic><topic>Mass Spectrometry</topic><topic>Photons</topic><topic>Physics</topic><topic>Scientific imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Payne, Anne H</creatorcontrib><creatorcontrib>Glish, Gary L</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Payne, Anne H</au><au>Glish, Gary L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermally Assisted Infrared Multiphoton Photodissociation in a Quadrupole Ion Trap</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2001-08-01</date><risdate>2001</risdate><volume>73</volume><issue>15</issue><spage>3542</spage><epage>3548</epage><pages>3542-3548</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Thermally assisted infrared multiphoton photodissociation (TA-IRMPD) provides an effective means to dissociate ions in the quadrupole ion trap mass spectrometer (QITMS) without detrimentally affecting the performance of the instrument. IRMPD can offer advantages over collision-induced dissociation (CID). However, collisions with the QITMS bath gas at the standard pressure and ambient temperature cause IR-irradiated ions to lose energy faster than photons can be absorbed to induce dissociation. The low pressure required for IRMPD (≤10-5 Torr) is not that required for optimal performance of the QITMS (10-3 Torr), and sensitivity and resolution suffer. TA-IRMPD is performed with the bath gas at an elevated temperature. The higher temperature of the bath gas results in less energy lost in collisions of the IR-excited ions with the bath gas. Thermal assistance allows IRMPD to be used at or near optimal pressures, which results in an ∼1 order of magnitude increase in signal intensity. Unlike CID, IRMPD allows small product ions, those less than about one-third the m/z of the parent ion, to be observed. IRMPD should also be more easily paired with fluctuating ion sources, as the corresponding fluctuations in resonant frequencies do not affect IRMPD. Finally, while IR irradiation nonselectively causes dissociation of all ions, TA-IRMPD can be made selective by using axial expansion to move ions away from the path of the laser beam.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>11510816</pmid><doi>10.1021/ac010245+</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2001-08, Vol.73 (15), p.3542-3548 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_71101910 |
source | ACS Publications; MEDLINE |
subjects | Atoms & subatomic particles Exact sciences and technology Infrared radiation Infrared Rays Instruments, apparatus, components and techniques common to several branches of physics and astronomy Ions Mass spectrometers and related techniques Mass Spectrometry Photons Physics Scientific imaging |
title | Thermally Assisted Infrared Multiphoton Photodissociation in a Quadrupole Ion Trap |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A56%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermally%20Assisted%20Infrared%20Multiphoton%20Photodissociation%20in%20a%20Quadrupole%20Ion%20Trap&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Payne,%20Anne%20H&rft.date=2001-08-01&rft.volume=73&rft.issue=15&rft.spage=3542&rft.epage=3548&rft.pages=3542-3548&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac010245+&rft_dat=%3Cproquest_cross%3E71101910%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217887339&rft_id=info:pmid/11510816&rfr_iscdi=true |