Insect Photoperiodism and Circadian Clocks: Models and Mechanisms

Photoperiodic clocks allow organisms to predict the coming season. In insects, the seasonal adaptive response mainly takes the form of diapause. The extensively studied photoperiodic clock in insects was primarily characterized by a “black-box” approach, resulting in numerous cybernetic models. This...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biological rhythms 2001-08, Vol.16 (4), p.381-390
Hauptverfasser: Tauber, Eran, Kyriacou, Bambos Panayiotis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 390
container_issue 4
container_start_page 381
container_title Journal of biological rhythms
container_volume 16
creator Tauber, Eran
Kyriacou, Bambos Panayiotis
description Photoperiodic clocks allow organisms to predict the coming season. In insects, the seasonal adaptive response mainly takes the form of diapause. The extensively studied photoperiodic clock in insects was primarily characterized by a “black-box” approach, resulting in numerous cybernetic models. This is in contrast with the circadian clock, which has been dissected pragmatically at the molecular level, particularly in Drosophila. Unfortunately, Drosophila melanogaster, the favorite model organism for circadian studies, does not demonstrate a pronounced seasonal response, and consequently molecular analysis has not progressed in this area. In the current article, the authors explore different ways in which identified molecular components of the circadian pacemaker may play a role in photoperiodism. Future progress in understanding the Drosophilacircadian pacemaker, particularly as further output components are identified, may provide a direct link between the clock and photoperiodism. In addition, with improved molecular tools, it is now possible to turn to other insects that have a more dramatic photoperiodic response.
doi_str_mv 10.1177/074873001129002088
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71091157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_074873001129002088</sage_id><sourcerecordid>81793953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-97f9c2ae6bdcb0c2a6a347dd1b78845d98686c777330617efcd4c3c007cb03a03</originalsourceid><addsrcrecordid>eNqF0c9LwzAUB_AgipvTf8CDFA_e6l5-t96k-GOwoQc9lzRJXWfbzKY9-N-bucFAQU8J5PNe-L6H0DmGa4ylnIJkiaQAGJMUgECSHKAx5pzEjFN8iMYbEAfBRujE-xUAiJTRYzTCmIOgCRmj21nrre6j56Xr3dp2lTOVbyLVmiirOq1Mpdooq51-9zfRwhlb--_HhdVL1QbqT9FRqWpvz3bnBL3e371kj_H86WGW3c5jzano41SWqSbKisLoAsJNKMqkMbiQScK4SRORCC2lpBQElrbUhmmqAWTgVAGdoKtt33XnPgbr-7ypvLZ1rVrrBp9LDGnIJf-FBBPgMuSfoMsfcOWGrg0hcgKMExnGFxDZIt057ztb5uuualT3mWPIN2vIf68hFF3sOg9FY82-ZDf3AKZb4NWb3X_7R8svuQSNiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204527748</pqid></control><display><type>article</type><title>Insect Photoperiodism and Circadian Clocks: Models and Mechanisms</title><source>MEDLINE</source><source>SAGE Complete A-Z List</source><creator>Tauber, Eran ; Kyriacou, Bambos Panayiotis</creator><creatorcontrib>Tauber, Eran ; Kyriacou, Bambos Panayiotis</creatorcontrib><description>Photoperiodic clocks allow organisms to predict the coming season. In insects, the seasonal adaptive response mainly takes the form of diapause. The extensively studied photoperiodic clock in insects was primarily characterized by a “black-box” approach, resulting in numerous cybernetic models. This is in contrast with the circadian clock, which has been dissected pragmatically at the molecular level, particularly in Drosophila. Unfortunately, Drosophila melanogaster, the favorite model organism for circadian studies, does not demonstrate a pronounced seasonal response, and consequently molecular analysis has not progressed in this area. In the current article, the authors explore different ways in which identified molecular components of the circadian pacemaker may play a role in photoperiodism. Future progress in understanding the Drosophilacircadian pacemaker, particularly as further output components are identified, may provide a direct link between the clock and photoperiodism. In addition, with improved molecular tools, it is now possible to turn to other insects that have a more dramatic photoperiodic response.</description><identifier>ISSN: 0748-7304</identifier><identifier>EISSN: 1552-4531</identifier><identifier>DOI: 10.1177/074873001129002088</identifier><identifier>PMID: 11506382</identifier><identifier>CODEN: JBRHEE</identifier><language>eng</language><publisher>Thousand Oaks, CA: Sage Publications</publisher><subject>Adaptation ; Animal behavior ; Animals ; Circadian rhythm ; Circadian Rhythm - genetics ; Circadian Rhythm - physiology ; Drosophila melanogaster ; Genetics ; Insecta - genetics ; Insecta - physiology ; Insects ; Models, Biological ; Photoperiod ; Seasons</subject><ispartof>Journal of biological rhythms, 2001-08, Vol.16 (4), p.381-390</ispartof><rights>Copyright Sage Publications, Inc. Aug 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-97f9c2ae6bdcb0c2a6a347dd1b78845d98686c777330617efcd4c3c007cb03a03</citedby><cites>FETCH-LOGICAL-c536t-97f9c2ae6bdcb0c2a6a347dd1b78845d98686c777330617efcd4c3c007cb03a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/074873001129002088$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/074873001129002088$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11506382$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tauber, Eran</creatorcontrib><creatorcontrib>Kyriacou, Bambos Panayiotis</creatorcontrib><title>Insect Photoperiodism and Circadian Clocks: Models and Mechanisms</title><title>Journal of biological rhythms</title><addtitle>J Biol Rhythms</addtitle><description>Photoperiodic clocks allow organisms to predict the coming season. In insects, the seasonal adaptive response mainly takes the form of diapause. The extensively studied photoperiodic clock in insects was primarily characterized by a “black-box” approach, resulting in numerous cybernetic models. This is in contrast with the circadian clock, which has been dissected pragmatically at the molecular level, particularly in Drosophila. Unfortunately, Drosophila melanogaster, the favorite model organism for circadian studies, does not demonstrate a pronounced seasonal response, and consequently molecular analysis has not progressed in this area. In the current article, the authors explore different ways in which identified molecular components of the circadian pacemaker may play a role in photoperiodism. Future progress in understanding the Drosophilacircadian pacemaker, particularly as further output components are identified, may provide a direct link between the clock and photoperiodism. In addition, with improved molecular tools, it is now possible to turn to other insects that have a more dramatic photoperiodic response.</description><subject>Adaptation</subject><subject>Animal behavior</subject><subject>Animals</subject><subject>Circadian rhythm</subject><subject>Circadian Rhythm - genetics</subject><subject>Circadian Rhythm - physiology</subject><subject>Drosophila melanogaster</subject><subject>Genetics</subject><subject>Insecta - genetics</subject><subject>Insecta - physiology</subject><subject>Insects</subject><subject>Models, Biological</subject><subject>Photoperiod</subject><subject>Seasons</subject><issn>0748-7304</issn><issn>1552-4531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c9LwzAUB_AgipvTf8CDFA_e6l5-t96k-GOwoQc9lzRJXWfbzKY9-N-bucFAQU8J5PNe-L6H0DmGa4ylnIJkiaQAGJMUgECSHKAx5pzEjFN8iMYbEAfBRujE-xUAiJTRYzTCmIOgCRmj21nrre6j56Xr3dp2lTOVbyLVmiirOq1Mpdooq51-9zfRwhlb--_HhdVL1QbqT9FRqWpvz3bnBL3e371kj_H86WGW3c5jzano41SWqSbKisLoAsJNKMqkMbiQScK4SRORCC2lpBQElrbUhmmqAWTgVAGdoKtt33XnPgbr-7ypvLZ1rVrrBp9LDGnIJf-FBBPgMuSfoMsfcOWGrg0hcgKMExnGFxDZIt057ztb5uuualT3mWPIN2vIf68hFF3sOg9FY82-ZDf3AKZb4NWb3X_7R8svuQSNiQ</recordid><startdate>20010801</startdate><enddate>20010801</enddate><creator>Tauber, Eran</creator><creator>Kyriacou, Bambos Panayiotis</creator><general>Sage Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7SS</scope><scope>7X8</scope></search><sort><creationdate>20010801</creationdate><title>Insect Photoperiodism and Circadian Clocks: Models and Mechanisms</title><author>Tauber, Eran ; Kyriacou, Bambos Panayiotis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-97f9c2ae6bdcb0c2a6a347dd1b78845d98686c777330617efcd4c3c007cb03a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Adaptation</topic><topic>Animal behavior</topic><topic>Animals</topic><topic>Circadian rhythm</topic><topic>Circadian Rhythm - genetics</topic><topic>Circadian Rhythm - physiology</topic><topic>Drosophila melanogaster</topic><topic>Genetics</topic><topic>Insecta - genetics</topic><topic>Insecta - physiology</topic><topic>Insects</topic><topic>Models, Biological</topic><topic>Photoperiod</topic><topic>Seasons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tauber, Eran</creatorcontrib><creatorcontrib>Kyriacou, Bambos Panayiotis</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biological rhythms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tauber, Eran</au><au>Kyriacou, Bambos Panayiotis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insect Photoperiodism and Circadian Clocks: Models and Mechanisms</atitle><jtitle>Journal of biological rhythms</jtitle><addtitle>J Biol Rhythms</addtitle><date>2001-08-01</date><risdate>2001</risdate><volume>16</volume><issue>4</issue><spage>381</spage><epage>390</epage><pages>381-390</pages><issn>0748-7304</issn><eissn>1552-4531</eissn><coden>JBRHEE</coden><abstract>Photoperiodic clocks allow organisms to predict the coming season. In insects, the seasonal adaptive response mainly takes the form of diapause. The extensively studied photoperiodic clock in insects was primarily characterized by a “black-box” approach, resulting in numerous cybernetic models. This is in contrast with the circadian clock, which has been dissected pragmatically at the molecular level, particularly in Drosophila. Unfortunately, Drosophila melanogaster, the favorite model organism for circadian studies, does not demonstrate a pronounced seasonal response, and consequently molecular analysis has not progressed in this area. In the current article, the authors explore different ways in which identified molecular components of the circadian pacemaker may play a role in photoperiodism. Future progress in understanding the Drosophilacircadian pacemaker, particularly as further output components are identified, may provide a direct link between the clock and photoperiodism. In addition, with improved molecular tools, it is now possible to turn to other insects that have a more dramatic photoperiodic response.</abstract><cop>Thousand Oaks, CA</cop><pub>Sage Publications</pub><pmid>11506382</pmid><doi>10.1177/074873001129002088</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0748-7304
ispartof Journal of biological rhythms, 2001-08, Vol.16 (4), p.381-390
issn 0748-7304
1552-4531
language eng
recordid cdi_proquest_miscellaneous_71091157
source MEDLINE; SAGE Complete A-Z List
subjects Adaptation
Animal behavior
Animals
Circadian rhythm
Circadian Rhythm - genetics
Circadian Rhythm - physiology
Drosophila melanogaster
Genetics
Insecta - genetics
Insecta - physiology
Insects
Models, Biological
Photoperiod
Seasons
title Insect Photoperiodism and Circadian Clocks: Models and Mechanisms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A14%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insect%20Photoperiodism%20and%20Circadian%20Clocks:%20Models%20and%20Mechanisms&rft.jtitle=Journal%20of%20biological%20rhythms&rft.au=Tauber,%20Eran&rft.date=2001-08-01&rft.volume=16&rft.issue=4&rft.spage=381&rft.epage=390&rft.pages=381-390&rft.issn=0748-7304&rft.eissn=1552-4531&rft.coden=JBRHEE&rft_id=info:doi/10.1177/074873001129002088&rft_dat=%3Cproquest_cross%3E81793953%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204527748&rft_id=info:pmid/11506382&rft_sage_id=10.1177_074873001129002088&rfr_iscdi=true