Origin of subarachnoid cerebrospinal fluid pulsations: a phase-contrast MR analysis

Cerebrospinal fluid (CSF) pulsations result from change of blood volume in the closed craniospinal cavity. We used cine phase contrast MR analysis to determine whether spinal CSF pulsations result from spinal vascular pulsations or intracranial subarachnoid pulsations, whether intracranial CSF pulsa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance imaging 2000-05, Vol.18 (4), p.387-395
Hauptverfasser: Henry–Feugeas, Marie-Cécile, Idy–Peretti, Ilana, Baledent, Olivier, Poncelet–Didon, Anne, Zannoli, Guillermo, Bittoun, Jacques, Schouman–Claeys, Elisabeth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 395
container_issue 4
container_start_page 387
container_title Magnetic resonance imaging
container_volume 18
creator Henry–Feugeas, Marie-Cécile
Idy–Peretti, Ilana
Baledent, Olivier
Poncelet–Didon, Anne
Zannoli, Guillermo
Bittoun, Jacques
Schouman–Claeys, Elisabeth
description Cerebrospinal fluid (CSF) pulsations result from change of blood volume in the closed craniospinal cavity. We used cine phase contrast MR analysis to determine whether spinal CSF pulsations result from spinal vascular pulsations or intracranial subarachnoid pulsations, whether intracranial CSF pulsations result from intracranial large arteries pulsations or cerebrovascular bed changes. We performed a quantified physiological mapping of CSF velocity waveforms along the craniospinal axis. Thirty-six volunteers participated in the study. MR acquisitions were obtained at the intracranial level, the upper, midcervical, cervicothoracic, mid thoracic, and/or the thoracolumbar levels. The temporal velocity information were plotted as wave form and key temporal parameters were determined and analyzed; intervals from the R wave to the onset of CSF systole, to CSF systolic peak, to the end of systole, as well as duration of systole. Three kinds of dynamic channels could be differentiated along the spinal axis, the lateral, medioventral and mediodorsal channels. Lateral spinal CSF pulse waves show significant craniocaudal propagation. No such significant progression was detected through the medial channels along the spine. Through the medial channels, a cephalic progression was observed from the upper cervical level to the intracranial level. At the craniocervical junction, mediodorsal CSF systole appeared the earliest one whereas in the anterior intracranial basal cistern, CSF systole appeared delayed. In conclusion, spinal CSF pulsations seem to result mainly from intracranial pulsations in the lateral channels, whereas local vascular pulsations could modify CSF pulse wave mainly in the medial channels. At the craniocervical junction, our results suggest that blood volume change in the richly vascularised cerebellar tonsils is the main initiating factor of CSF systole; and that spinal vascular pulsations could be considered as an additional early and variable CSF pump.
doi_str_mv 10.1016/S0730-725X(99)00142-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71078403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0730725X99001423</els_id><sourcerecordid>71078403</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-823f2f76db1c3e6299c2f52a77bfb8cf35dde020a0b8ba4fd117c57d2254e73</originalsourceid><addsrcrecordid>eNqFkE1P3DAQhi1EBQvtTwDlgCp6SOuPOE64VAi1pRIVUreH3qyJPQajbBI8CRL_niy7Am6cRho973w8jB0J_lVwUX5bcqN4bqT-f1rXXzgXhczVDluIyqhcV3WxyxYvyD47ILrjnGup9B7bF9xUlRF6wZbXKd7ELutDRlMDCdxt10efOUzYpJ6G2EGbhXaae8PUEoyx7-gsg2y4BcLc9d2YgMbsz98MZvSRIn1kHwK0hJ-29ZAtf_74d3GZX13_-n1xfpW7QpdjXkkVZDClb4RTWMq6djJoCcY0oalcUNp75JIDb6oGiuCFME4bL6Uu0KhD9nkzdUj9_YQ02lUkh20LHfYTWbN-suBqBvUGdPM_lDDYIcUVpEcruF27tM8u7VqUrWv77NKuc8fbBVOzQv8mtZE3AydbAMhBGxJ0LtIrp4pSinrGvm8wnF08REyWXMTOoY8J3Wh9H9-55AlSY5HX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71078403</pqid></control><display><type>article</type><title>Origin of subarachnoid cerebrospinal fluid pulsations: a phase-contrast MR analysis</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Henry–Feugeas, Marie-Cécile ; Idy–Peretti, Ilana ; Baledent, Olivier ; Poncelet–Didon, Anne ; Zannoli, Guillermo ; Bittoun, Jacques ; Schouman–Claeys, Elisabeth</creator><creatorcontrib>Henry–Feugeas, Marie-Cécile ; Idy–Peretti, Ilana ; Baledent, Olivier ; Poncelet–Didon, Anne ; Zannoli, Guillermo ; Bittoun, Jacques ; Schouman–Claeys, Elisabeth</creatorcontrib><description>Cerebrospinal fluid (CSF) pulsations result from change of blood volume in the closed craniospinal cavity. We used cine phase contrast MR analysis to determine whether spinal CSF pulsations result from spinal vascular pulsations or intracranial subarachnoid pulsations, whether intracranial CSF pulsations result from intracranial large arteries pulsations or cerebrovascular bed changes. We performed a quantified physiological mapping of CSF velocity waveforms along the craniospinal axis. Thirty-six volunteers participated in the study. MR acquisitions were obtained at the intracranial level, the upper, midcervical, cervicothoracic, mid thoracic, and/or the thoracolumbar levels. The temporal velocity information were plotted as wave form and key temporal parameters were determined and analyzed; intervals from the R wave to the onset of CSF systole, to CSF systolic peak, to the end of systole, as well as duration of systole. Three kinds of dynamic channels could be differentiated along the spinal axis, the lateral, medioventral and mediodorsal channels. Lateral spinal CSF pulse waves show significant craniocaudal propagation. No such significant progression was detected through the medial channels along the spine. Through the medial channels, a cephalic progression was observed from the upper cervical level to the intracranial level. At the craniocervical junction, mediodorsal CSF systole appeared the earliest one whereas in the anterior intracranial basal cistern, CSF systole appeared delayed. In conclusion, spinal CSF pulsations seem to result mainly from intracranial pulsations in the lateral channels, whereas local vascular pulsations could modify CSF pulse wave mainly in the medial channels. At the craniocervical junction, our results suggest that blood volume change in the richly vascularised cerebellar tonsils is the main initiating factor of CSF systole; and that spinal vascular pulsations could be considered as an additional early and variable CSF pump.</description><identifier>ISSN: 0730-725X</identifier><identifier>EISSN: 1873-5894</identifier><identifier>DOI: 10.1016/S0730-725X(99)00142-3</identifier><identifier>PMID: 10788715</identifier><identifier>CODEN: MRIMDQ</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Adolescent ; Adult ; Biological and medical sciences ; Cerebrospinal fluid ; Cerebrospinal Fluid - physiology ; Female ; Flow ; Flow dynamics ; Humans ; Investigative techniques, diagnostic techniques (general aspects) ; Magnetic Resonance Imaging, Cine ; Male ; Medical sciences ; Nervous system ; Phase ; Pulse ; Radiodiagnosis. Nmr imagery. Nmr spectrometry ; Rheology ; Subarachnoid Space - physiology ; Systole</subject><ispartof>Magnetic resonance imaging, 2000-05, Vol.18 (4), p.387-395</ispartof><rights>2000 Elsevier Science Inc.</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-823f2f76db1c3e6299c2f52a77bfb8cf35dde020a0b8ba4fd117c57d2254e73</citedby><cites>FETCH-LOGICAL-c456t-823f2f76db1c3e6299c2f52a77bfb8cf35dde020a0b8ba4fd117c57d2254e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0730725X99001423$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1346219$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10788715$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Henry–Feugeas, Marie-Cécile</creatorcontrib><creatorcontrib>Idy–Peretti, Ilana</creatorcontrib><creatorcontrib>Baledent, Olivier</creatorcontrib><creatorcontrib>Poncelet–Didon, Anne</creatorcontrib><creatorcontrib>Zannoli, Guillermo</creatorcontrib><creatorcontrib>Bittoun, Jacques</creatorcontrib><creatorcontrib>Schouman–Claeys, Elisabeth</creatorcontrib><title>Origin of subarachnoid cerebrospinal fluid pulsations: a phase-contrast MR analysis</title><title>Magnetic resonance imaging</title><addtitle>Magn Reson Imaging</addtitle><description>Cerebrospinal fluid (CSF) pulsations result from change of blood volume in the closed craniospinal cavity. We used cine phase contrast MR analysis to determine whether spinal CSF pulsations result from spinal vascular pulsations or intracranial subarachnoid pulsations, whether intracranial CSF pulsations result from intracranial large arteries pulsations or cerebrovascular bed changes. We performed a quantified physiological mapping of CSF velocity waveforms along the craniospinal axis. Thirty-six volunteers participated in the study. MR acquisitions were obtained at the intracranial level, the upper, midcervical, cervicothoracic, mid thoracic, and/or the thoracolumbar levels. The temporal velocity information were plotted as wave form and key temporal parameters were determined and analyzed; intervals from the R wave to the onset of CSF systole, to CSF systolic peak, to the end of systole, as well as duration of systole. Three kinds of dynamic channels could be differentiated along the spinal axis, the lateral, medioventral and mediodorsal channels. Lateral spinal CSF pulse waves show significant craniocaudal propagation. No such significant progression was detected through the medial channels along the spine. Through the medial channels, a cephalic progression was observed from the upper cervical level to the intracranial level. At the craniocervical junction, mediodorsal CSF systole appeared the earliest one whereas in the anterior intracranial basal cistern, CSF systole appeared delayed. In conclusion, spinal CSF pulsations seem to result mainly from intracranial pulsations in the lateral channels, whereas local vascular pulsations could modify CSF pulse wave mainly in the medial channels. At the craniocervical junction, our results suggest that blood volume change in the richly vascularised cerebellar tonsils is the main initiating factor of CSF systole; and that spinal vascular pulsations could be considered as an additional early and variable CSF pump.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Biological and medical sciences</subject><subject>Cerebrospinal fluid</subject><subject>Cerebrospinal Fluid - physiology</subject><subject>Female</subject><subject>Flow</subject><subject>Flow dynamics</subject><subject>Humans</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Magnetic Resonance Imaging, Cine</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Nervous system</subject><subject>Phase</subject><subject>Pulse</subject><subject>Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><subject>Rheology</subject><subject>Subarachnoid Space - physiology</subject><subject>Systole</subject><issn>0730-725X</issn><issn>1873-5894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1P3DAQhi1EBQvtTwDlgCp6SOuPOE64VAi1pRIVUreH3qyJPQajbBI8CRL_niy7Am6cRho973w8jB0J_lVwUX5bcqN4bqT-f1rXXzgXhczVDluIyqhcV3WxyxYvyD47ILrjnGup9B7bF9xUlRF6wZbXKd7ELutDRlMDCdxt10efOUzYpJ6G2EGbhXaae8PUEoyx7-gsg2y4BcLc9d2YgMbsz98MZvSRIn1kHwK0hJ-29ZAtf_74d3GZX13_-n1xfpW7QpdjXkkVZDClb4RTWMq6djJoCcY0oalcUNp75JIDb6oGiuCFME4bL6Uu0KhD9nkzdUj9_YQ02lUkh20LHfYTWbN-suBqBvUGdPM_lDDYIcUVpEcruF27tM8u7VqUrWv77NKuc8fbBVOzQv8mtZE3AydbAMhBGxJ0LtIrp4pSinrGvm8wnF08REyWXMTOoY8J3Wh9H9-55AlSY5HX</recordid><startdate>20000501</startdate><enddate>20000501</enddate><creator>Henry–Feugeas, Marie-Cécile</creator><creator>Idy–Peretti, Ilana</creator><creator>Baledent, Olivier</creator><creator>Poncelet–Didon, Anne</creator><creator>Zannoli, Guillermo</creator><creator>Bittoun, Jacques</creator><creator>Schouman–Claeys, Elisabeth</creator><general>Elsevier Inc</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20000501</creationdate><title>Origin of subarachnoid cerebrospinal fluid pulsations: a phase-contrast MR analysis</title><author>Henry–Feugeas, Marie-Cécile ; Idy–Peretti, Ilana ; Baledent, Olivier ; Poncelet–Didon, Anne ; Zannoli, Guillermo ; Bittoun, Jacques ; Schouman–Claeys, Elisabeth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-823f2f76db1c3e6299c2f52a77bfb8cf35dde020a0b8ba4fd117c57d2254e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Biological and medical sciences</topic><topic>Cerebrospinal fluid</topic><topic>Cerebrospinal Fluid - physiology</topic><topic>Female</topic><topic>Flow</topic><topic>Flow dynamics</topic><topic>Humans</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Magnetic Resonance Imaging, Cine</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Nervous system</topic><topic>Phase</topic><topic>Pulse</topic><topic>Radiodiagnosis. Nmr imagery. Nmr spectrometry</topic><topic>Rheology</topic><topic>Subarachnoid Space - physiology</topic><topic>Systole</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Henry–Feugeas, Marie-Cécile</creatorcontrib><creatorcontrib>Idy–Peretti, Ilana</creatorcontrib><creatorcontrib>Baledent, Olivier</creatorcontrib><creatorcontrib>Poncelet–Didon, Anne</creatorcontrib><creatorcontrib>Zannoli, Guillermo</creatorcontrib><creatorcontrib>Bittoun, Jacques</creatorcontrib><creatorcontrib>Schouman–Claeys, Elisabeth</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Henry–Feugeas, Marie-Cécile</au><au>Idy–Peretti, Ilana</au><au>Baledent, Olivier</au><au>Poncelet–Didon, Anne</au><au>Zannoli, Guillermo</au><au>Bittoun, Jacques</au><au>Schouman–Claeys, Elisabeth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Origin of subarachnoid cerebrospinal fluid pulsations: a phase-contrast MR analysis</atitle><jtitle>Magnetic resonance imaging</jtitle><addtitle>Magn Reson Imaging</addtitle><date>2000-05-01</date><risdate>2000</risdate><volume>18</volume><issue>4</issue><spage>387</spage><epage>395</epage><pages>387-395</pages><issn>0730-725X</issn><eissn>1873-5894</eissn><coden>MRIMDQ</coden><abstract>Cerebrospinal fluid (CSF) pulsations result from change of blood volume in the closed craniospinal cavity. We used cine phase contrast MR analysis to determine whether spinal CSF pulsations result from spinal vascular pulsations or intracranial subarachnoid pulsations, whether intracranial CSF pulsations result from intracranial large arteries pulsations or cerebrovascular bed changes. We performed a quantified physiological mapping of CSF velocity waveforms along the craniospinal axis. Thirty-six volunteers participated in the study. MR acquisitions were obtained at the intracranial level, the upper, midcervical, cervicothoracic, mid thoracic, and/or the thoracolumbar levels. The temporal velocity information were plotted as wave form and key temporal parameters were determined and analyzed; intervals from the R wave to the onset of CSF systole, to CSF systolic peak, to the end of systole, as well as duration of systole. Three kinds of dynamic channels could be differentiated along the spinal axis, the lateral, medioventral and mediodorsal channels. Lateral spinal CSF pulse waves show significant craniocaudal propagation. No such significant progression was detected through the medial channels along the spine. Through the medial channels, a cephalic progression was observed from the upper cervical level to the intracranial level. At the craniocervical junction, mediodorsal CSF systole appeared the earliest one whereas in the anterior intracranial basal cistern, CSF systole appeared delayed. In conclusion, spinal CSF pulsations seem to result mainly from intracranial pulsations in the lateral channels, whereas local vascular pulsations could modify CSF pulse wave mainly in the medial channels. At the craniocervical junction, our results suggest that blood volume change in the richly vascularised cerebellar tonsils is the main initiating factor of CSF systole; and that spinal vascular pulsations could be considered as an additional early and variable CSF pump.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><pmid>10788715</pmid><doi>10.1016/S0730-725X(99)00142-3</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0730-725X
ispartof Magnetic resonance imaging, 2000-05, Vol.18 (4), p.387-395
issn 0730-725X
1873-5894
language eng
recordid cdi_proquest_miscellaneous_71078403
source MEDLINE; Elsevier ScienceDirect Journals
subjects Adolescent
Adult
Biological and medical sciences
Cerebrospinal fluid
Cerebrospinal Fluid - physiology
Female
Flow
Flow dynamics
Humans
Investigative techniques, diagnostic techniques (general aspects)
Magnetic Resonance Imaging, Cine
Male
Medical sciences
Nervous system
Phase
Pulse
Radiodiagnosis. Nmr imagery. Nmr spectrometry
Rheology
Subarachnoid Space - physiology
Systole
title Origin of subarachnoid cerebrospinal fluid pulsations: a phase-contrast MR analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A48%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Origin%20of%20subarachnoid%20cerebrospinal%20fluid%20pulsations:%20a%20phase-contrast%20MR%20analysis&rft.jtitle=Magnetic%20resonance%20imaging&rft.au=Henry%E2%80%93Feugeas,%20Marie-C%C3%A9cile&rft.date=2000-05-01&rft.volume=18&rft.issue=4&rft.spage=387&rft.epage=395&rft.pages=387-395&rft.issn=0730-725X&rft.eissn=1873-5894&rft.coden=MRIMDQ&rft_id=info:doi/10.1016/S0730-725X(99)00142-3&rft_dat=%3Cproquest_cross%3E71078403%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71078403&rft_id=info:pmid/10788715&rft_els_id=S0730725X99001423&rfr_iscdi=true