Colocalization and Coassembly of Two Human Brain M-Type Potassium Channel Subunits that are Mutated in Epilepsy

Acetylcholine excites many central and autonomic neurons through inhibition of M-channels, slowly activating, noninactivating voltage-gated potassium channels. We here provide information regarding the in vivo distribution and biochemical characteristics of human brain KCNQ2 and KCNQ3, two channel s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2000-04, Vol.97 (9), p.4914-4919
Hauptverfasser: Cooper, Edward C., Aldape, Kenneth D., Abosch, Aviva, Barbaro, Nicholas M., Berger, Mitchel S., Peacock, Warwick S., Jan, Yuh Nung, Jan, Lily Yeh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4919
container_issue 9
container_start_page 4914
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 97
creator Cooper, Edward C.
Aldape, Kenneth D.
Abosch, Aviva
Barbaro, Nicholas M.
Berger, Mitchel S.
Peacock, Warwick S.
Jan, Yuh Nung
Jan, Lily Yeh
description Acetylcholine excites many central and autonomic neurons through inhibition of M-channels, slowly activating, noninactivating voltage-gated potassium channels. We here provide information regarding the in vivo distribution and biochemical characteristics of human brain KCNQ2 and KCNQ3, two channel subunits that form M-channels when expressed in vitro, and, when mutated, cause the dominantly inherited epileptic syndrome, benign neonatal familial convulsions. KCNQ2 and KCNQ3 proteins are colocalized in a somatodendritic pattern on pyramidal and polymorphic neurons in the human cortex and hippocampus. Immunoreactivity for KCNQ2, but not KCNQ3, is also prominent in some terminal fields, suggesting a presynaptic role for a distinct subgroup of M-channels in the regulation of action potential propagation and neurotransmitter release. KCNQ2 and KCNQ3 can be coimmunoprecipitated from brain lysates. Further, KCNQ2 and KCNQ3 are coassociated with tubulin and protein kinase A within a Triton X-100-insoluble protein complex. This complex is not associated with low-density membrane rafts or with N-methyl-D-aspartate receptors, PSD-95 scaffolding proteins, or other potassium channels tested. Our studies thus provide a view of a signalling complex that may be important for cognitive function as well as epilepsy. Analysis of this complex may shed light on the unknown transduction pathway linking muscarinic acetylcholine receptor activation to M-channel inhibition.
doi_str_mv 10.1073/pnas.090092797
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_71076668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>122491</jstor_id><sourcerecordid>122491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c515t-b52766ece2eba2adf9d8e16c968b3b426378ee1473783cb899efd1a714060bdf3</originalsourceid><addsrcrecordid>eNqFkUtv1DAURiMEokNhywaBLBbsMviR-CGxgVGhSK1AYlhbTnLDZOTYqe3QDr8ej6aUgQWsvPjOsa_vVxRPCV4SLNjryZm4xApjRYUS94oFwYqUvFL4frHAmIpSVrQ6KR7FuMWZqiV-WJxkVWZQLgq_8ta3xg4_TBq8Q8Z1aOVNjDA2dod8j9bXHp3Po3HoXTCDQ5flejcB-uxTpoZ5RKuNcQ4s-jI3sxtSRGljEjIB0OWcTIIOZetsGixMcfe4eNAbG-HJ7XlafH1_tl6dlxefPnxcvb0o25rUqWxqKjiHFig0hpquV50EwlvFZcOainImJACpRD5Z20iloO-IEaTCHDddz06LN4d7p7kZoWvBpWCsnsIwmrDT3gz6z8QNG_3Nf9dEMkaz_upWD_5qhpj0OMQWrDUO_By1yBvknMv_gkTUTArOMvjyL3Dr5-DyDjTFhNUVljhDywPUBh9jgP5uYIL1vm-971vf9Z2FF8ffPMIPBR_Ntxd_xUpopStFKt3P1ia4SRl8_i8w588O-TYmH34_RGmO2U_R7sjN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201354080</pqid></control><display><type>article</type><title>Colocalization and Coassembly of Two Human Brain M-Type Potassium Channel Subunits that are Mutated in Epilepsy</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Cooper, Edward C. ; Aldape, Kenneth D. ; Abosch, Aviva ; Barbaro, Nicholas M. ; Berger, Mitchel S. ; Peacock, Warwick S. ; Jan, Yuh Nung ; Jan, Lily Yeh</creator><creatorcontrib>Cooper, Edward C. ; Aldape, Kenneth D. ; Abosch, Aviva ; Barbaro, Nicholas M. ; Berger, Mitchel S. ; Peacock, Warwick S. ; Jan, Yuh Nung ; Jan, Lily Yeh</creatorcontrib><description>Acetylcholine excites many central and autonomic neurons through inhibition of M-channels, slowly activating, noninactivating voltage-gated potassium channels. We here provide information regarding the in vivo distribution and biochemical characteristics of human brain KCNQ2 and KCNQ3, two channel subunits that form M-channels when expressed in vitro, and, when mutated, cause the dominantly inherited epileptic syndrome, benign neonatal familial convulsions. KCNQ2 and KCNQ3 proteins are colocalized in a somatodendritic pattern on pyramidal and polymorphic neurons in the human cortex and hippocampus. Immunoreactivity for KCNQ2, but not KCNQ3, is also prominent in some terminal fields, suggesting a presynaptic role for a distinct subgroup of M-channels in the regulation of action potential propagation and neurotransmitter release. KCNQ2 and KCNQ3 can be coimmunoprecipitated from brain lysates. Further, KCNQ2 and KCNQ3 are coassociated with tubulin and protein kinase A within a Triton X-100-insoluble protein complex. This complex is not associated with low-density membrane rafts or with N-methyl-D-aspartate receptors, PSD-95 scaffolding proteins, or other potassium channels tested. Our studies thus provide a view of a signalling complex that may be important for cognitive function as well as epilepsy. Analysis of this complex may shed light on the unknown transduction pathway linking muscarinic acetylcholine receptor activation to M-channel inhibition.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.090092797</identifier><identifier>PMID: 10781098</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Antibodies ; Biological Sciences ; Brain ; Brain - metabolism ; Brain - pathology ; Cell Line ; Centrifugation ; Cerebral Cortex - metabolism ; Cerebral Cortex - pathology ; Complementary DNA ; Epilepsy ; Epilepsy - genetics ; Epilepsy - pathology ; HEK293 cells ; Hippocampus ; Hippocampus - metabolism ; Hippocampus - pathology ; Humans ; Immunohistochemistry ; KCNQ2 Potassium Channel ; KCNQ2 protein ; KCNQ3 Potassium Channel ; KCNQ3 protein ; Macromolecular Substances ; Mutation ; Neurology ; Neurons ; Potassium ; Potassium Channels - analysis ; Potassium Channels - genetics ; Potassium Channels, Voltage-Gated ; Proteins ; Recombinant Proteins - analysis ; Recombinant Proteins - biosynthesis ; Solubilization ; Subcellular Fractions - metabolism ; Transfection</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2000-04, Vol.97 (9), p.4914-4919</ispartof><rights>Copyright 1993-2000 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Apr 25, 2000</rights><rights>Copyright © The National Academy of Sciences 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c515t-b52766ece2eba2adf9d8e16c968b3b426378ee1473783cb899efd1a714060bdf3</citedby><cites>FETCH-LOGICAL-c515t-b52766ece2eba2adf9d8e16c968b3b426378ee1473783cb899efd1a714060bdf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/97/9.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/122491$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/122491$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10781098$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cooper, Edward C.</creatorcontrib><creatorcontrib>Aldape, Kenneth D.</creatorcontrib><creatorcontrib>Abosch, Aviva</creatorcontrib><creatorcontrib>Barbaro, Nicholas M.</creatorcontrib><creatorcontrib>Berger, Mitchel S.</creatorcontrib><creatorcontrib>Peacock, Warwick S.</creatorcontrib><creatorcontrib>Jan, Yuh Nung</creatorcontrib><creatorcontrib>Jan, Lily Yeh</creatorcontrib><title>Colocalization and Coassembly of Two Human Brain M-Type Potassium Channel Subunits that are Mutated in Epilepsy</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Acetylcholine excites many central and autonomic neurons through inhibition of M-channels, slowly activating, noninactivating voltage-gated potassium channels. We here provide information regarding the in vivo distribution and biochemical characteristics of human brain KCNQ2 and KCNQ3, two channel subunits that form M-channels when expressed in vitro, and, when mutated, cause the dominantly inherited epileptic syndrome, benign neonatal familial convulsions. KCNQ2 and KCNQ3 proteins are colocalized in a somatodendritic pattern on pyramidal and polymorphic neurons in the human cortex and hippocampus. Immunoreactivity for KCNQ2, but not KCNQ3, is also prominent in some terminal fields, suggesting a presynaptic role for a distinct subgroup of M-channels in the regulation of action potential propagation and neurotransmitter release. KCNQ2 and KCNQ3 can be coimmunoprecipitated from brain lysates. Further, KCNQ2 and KCNQ3 are coassociated with tubulin and protein kinase A within a Triton X-100-insoluble protein complex. This complex is not associated with low-density membrane rafts or with N-methyl-D-aspartate receptors, PSD-95 scaffolding proteins, or other potassium channels tested. Our studies thus provide a view of a signalling complex that may be important for cognitive function as well as epilepsy. Analysis of this complex may shed light on the unknown transduction pathway linking muscarinic acetylcholine receptor activation to M-channel inhibition.</description><subject>Antibodies</subject><subject>Biological Sciences</subject><subject>Brain</subject><subject>Brain - metabolism</subject><subject>Brain - pathology</subject><subject>Cell Line</subject><subject>Centrifugation</subject><subject>Cerebral Cortex - metabolism</subject><subject>Cerebral Cortex - pathology</subject><subject>Complementary DNA</subject><subject>Epilepsy</subject><subject>Epilepsy - genetics</subject><subject>Epilepsy - pathology</subject><subject>HEK293 cells</subject><subject>Hippocampus</subject><subject>Hippocampus - metabolism</subject><subject>Hippocampus - pathology</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>KCNQ2 Potassium Channel</subject><subject>KCNQ2 protein</subject><subject>KCNQ3 Potassium Channel</subject><subject>KCNQ3 protein</subject><subject>Macromolecular Substances</subject><subject>Mutation</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Potassium</subject><subject>Potassium Channels - analysis</subject><subject>Potassium Channels - genetics</subject><subject>Potassium Channels, Voltage-Gated</subject><subject>Proteins</subject><subject>Recombinant Proteins - analysis</subject><subject>Recombinant Proteins - biosynthesis</subject><subject>Solubilization</subject><subject>Subcellular Fractions - metabolism</subject><subject>Transfection</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAURiMEokNhywaBLBbsMviR-CGxgVGhSK1AYlhbTnLDZOTYqe3QDr8ej6aUgQWsvPjOsa_vVxRPCV4SLNjryZm4xApjRYUS94oFwYqUvFL4frHAmIpSVrQ6KR7FuMWZqiV-WJxkVWZQLgq_8ta3xg4_TBq8Q8Z1aOVNjDA2dod8j9bXHp3Po3HoXTCDQ5flejcB-uxTpoZ5RKuNcQ4s-jI3sxtSRGljEjIB0OWcTIIOZetsGixMcfe4eNAbG-HJ7XlafH1_tl6dlxefPnxcvb0o25rUqWxqKjiHFig0hpquV50EwlvFZcOainImJACpRD5Z20iloO-IEaTCHDddz06LN4d7p7kZoWvBpWCsnsIwmrDT3gz6z8QNG_3Nf9dEMkaz_upWD_5qhpj0OMQWrDUO_By1yBvknMv_gkTUTArOMvjyL3Dr5-DyDjTFhNUVljhDywPUBh9jgP5uYIL1vm-971vf9Z2FF8ffPMIPBR_Ntxd_xUpopStFKt3P1ia4SRl8_i8w588O-TYmH34_RGmO2U_R7sjN</recordid><startdate>20000425</startdate><enddate>20000425</enddate><creator>Cooper, Edward C.</creator><creator>Aldape, Kenneth D.</creator><creator>Abosch, Aviva</creator><creator>Barbaro, Nicholas M.</creator><creator>Berger, Mitchel S.</creator><creator>Peacock, Warwick S.</creator><creator>Jan, Yuh Nung</creator><creator>Jan, Lily Yeh</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20000425</creationdate><title>Colocalization and Coassembly of Two Human Brain M-Type Potassium Channel Subunits that are Mutated in Epilepsy</title><author>Cooper, Edward C. ; Aldape, Kenneth D. ; Abosch, Aviva ; Barbaro, Nicholas M. ; Berger, Mitchel S. ; Peacock, Warwick S. ; Jan, Yuh Nung ; Jan, Lily Yeh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c515t-b52766ece2eba2adf9d8e16c968b3b426378ee1473783cb899efd1a714060bdf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Antibodies</topic><topic>Biological Sciences</topic><topic>Brain</topic><topic>Brain - metabolism</topic><topic>Brain - pathology</topic><topic>Cell Line</topic><topic>Centrifugation</topic><topic>Cerebral Cortex - metabolism</topic><topic>Cerebral Cortex - pathology</topic><topic>Complementary DNA</topic><topic>Epilepsy</topic><topic>Epilepsy - genetics</topic><topic>Epilepsy - pathology</topic><topic>HEK293 cells</topic><topic>Hippocampus</topic><topic>Hippocampus - metabolism</topic><topic>Hippocampus - pathology</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>KCNQ2 Potassium Channel</topic><topic>KCNQ2 protein</topic><topic>KCNQ3 Potassium Channel</topic><topic>KCNQ3 protein</topic><topic>Macromolecular Substances</topic><topic>Mutation</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Potassium</topic><topic>Potassium Channels - analysis</topic><topic>Potassium Channels - genetics</topic><topic>Potassium Channels, Voltage-Gated</topic><topic>Proteins</topic><topic>Recombinant Proteins - analysis</topic><topic>Recombinant Proteins - biosynthesis</topic><topic>Solubilization</topic><topic>Subcellular Fractions - metabolism</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cooper, Edward C.</creatorcontrib><creatorcontrib>Aldape, Kenneth D.</creatorcontrib><creatorcontrib>Abosch, Aviva</creatorcontrib><creatorcontrib>Barbaro, Nicholas M.</creatorcontrib><creatorcontrib>Berger, Mitchel S.</creatorcontrib><creatorcontrib>Peacock, Warwick S.</creatorcontrib><creatorcontrib>Jan, Yuh Nung</creatorcontrib><creatorcontrib>Jan, Lily Yeh</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cooper, Edward C.</au><au>Aldape, Kenneth D.</au><au>Abosch, Aviva</au><au>Barbaro, Nicholas M.</au><au>Berger, Mitchel S.</au><au>Peacock, Warwick S.</au><au>Jan, Yuh Nung</au><au>Jan, Lily Yeh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Colocalization and Coassembly of Two Human Brain M-Type Potassium Channel Subunits that are Mutated in Epilepsy</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2000-04-25</date><risdate>2000</risdate><volume>97</volume><issue>9</issue><spage>4914</spage><epage>4919</epage><pages>4914-4919</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Acetylcholine excites many central and autonomic neurons through inhibition of M-channels, slowly activating, noninactivating voltage-gated potassium channels. We here provide information regarding the in vivo distribution and biochemical characteristics of human brain KCNQ2 and KCNQ3, two channel subunits that form M-channels when expressed in vitro, and, when mutated, cause the dominantly inherited epileptic syndrome, benign neonatal familial convulsions. KCNQ2 and KCNQ3 proteins are colocalized in a somatodendritic pattern on pyramidal and polymorphic neurons in the human cortex and hippocampus. Immunoreactivity for KCNQ2, but not KCNQ3, is also prominent in some terminal fields, suggesting a presynaptic role for a distinct subgroup of M-channels in the regulation of action potential propagation and neurotransmitter release. KCNQ2 and KCNQ3 can be coimmunoprecipitated from brain lysates. Further, KCNQ2 and KCNQ3 are coassociated with tubulin and protein kinase A within a Triton X-100-insoluble protein complex. This complex is not associated with low-density membrane rafts or with N-methyl-D-aspartate receptors, PSD-95 scaffolding proteins, or other potassium channels tested. Our studies thus provide a view of a signalling complex that may be important for cognitive function as well as epilepsy. Analysis of this complex may shed light on the unknown transduction pathway linking muscarinic acetylcholine receptor activation to M-channel inhibition.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>10781098</pmid><doi>10.1073/pnas.090092797</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2000-04, Vol.97 (9), p.4914-4919
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_71076668
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Antibodies
Biological Sciences
Brain
Brain - metabolism
Brain - pathology
Cell Line
Centrifugation
Cerebral Cortex - metabolism
Cerebral Cortex - pathology
Complementary DNA
Epilepsy
Epilepsy - genetics
Epilepsy - pathology
HEK293 cells
Hippocampus
Hippocampus - metabolism
Hippocampus - pathology
Humans
Immunohistochemistry
KCNQ2 Potassium Channel
KCNQ2 protein
KCNQ3 Potassium Channel
KCNQ3 protein
Macromolecular Substances
Mutation
Neurology
Neurons
Potassium
Potassium Channels - analysis
Potassium Channels - genetics
Potassium Channels, Voltage-Gated
Proteins
Recombinant Proteins - analysis
Recombinant Proteins - biosynthesis
Solubilization
Subcellular Fractions - metabolism
Transfection
title Colocalization and Coassembly of Two Human Brain M-Type Potassium Channel Subunits that are Mutated in Epilepsy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-22T00%3A22%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Colocalization%20and%20Coassembly%20of%20Two%20Human%20Brain%20M-Type%20Potassium%20Channel%20Subunits%20that%20are%20Mutated%20in%20Epilepsy&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Cooper,%20Edward%20C.&rft.date=2000-04-25&rft.volume=97&rft.issue=9&rft.spage=4914&rft.epage=4919&rft.pages=4914-4919&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.090092797&rft_dat=%3Cjstor_proqu%3E122491%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201354080&rft_id=info:pmid/10781098&rft_jstor_id=122491&rfr_iscdi=true