Role of genetic algorithms and artificial neural networks in predicting the phase behavior of colloidal delivery systems

A genetic neural network (GNN) model was developed to predict the phase behavior of microemulsion (ME), lamellar liquid crystal (LC), and coarse emulsion forming systems (W/O EM and O/W EM) depending on the content of separate components in the system and cosurfactant nature. Eight pseudoternary pha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmaceutical research 2001-07, Vol.18 (7), p.1049-1055
Hauptverfasser: AGATONOVIC-KUSTRIN, Snezana, ALANY, Raid G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1055
container_issue 7
container_start_page 1049
container_title Pharmaceutical research
container_volume 18
creator AGATONOVIC-KUSTRIN, Snezana
ALANY, Raid G
description A genetic neural network (GNN) model was developed to predict the phase behavior of microemulsion (ME), lamellar liquid crystal (LC), and coarse emulsion forming systems (W/O EM and O/W EM) depending on the content of separate components in the system and cosurfactant nature. Eight pseudoternary phase triangles, containing ethyl oleate as the oil component and a mixture of two nonionic surfactants and n-alcohol or 1,2-alkanediol as a cosurfactant, were constructed and used for training, testing, and validation purposes. A total of 21 molecular descriptors were calculated for each cosurfactant. A genetic algorithm was used to select important molecular descriptors, and a supervised artificial neural network with two hidden layers was used to correlate selected descriptors and the weight ratio of components in the system with the observed phase behavior. The results proved the dominant role of the chemical composition, hydrophile-lipophile balance, length of hydrocarbon chain, molecular volume, and hydrocarbon volume of cosurfactant. The best GNN model, with 14 inputs and two hidden layers with 14 and 9 neurons, predicted the phase behavior for a new set of cosurfactants with 82.2% accuracy for ME, 87.5% for LC, 83.3% for the O/W EM, and 91.5% for the W/O EM region. This type of methodology can be applied in the evaluation of the cosurfactants for pharmaceutical formulations to minimize experimental effort.
doi_str_mv 10.1023/A:1010913017092
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_71071570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71071570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-2102d300296939f8ef9a4c0a90c418c518c87e1fae6d4e3920d41f386818bb5c3</originalsourceid><addsrcrecordid>eNpdkEGLFDEQhYMo7uzq2ZsEEW-tVUlmknhbFl2FBUEUvDWZdPVM1nRnTNKr8--NOoJ4KN7le49Xj7EnCC8RhHx1-RoBwaIE1GDFPbbCtZadBfXlPluBFqozWuEZOy_lFgAMWvWQnSEqu7FKrdiPjykSTyPf0Uw1eO7iLuVQ91Phbh64yzWMwQcX-UxL_i31e8pfCw8zP2Qagq9h3vG6J37Yu0J8S3t3F1L-lepTjCkMzTZQDHeUj7wcS6WpPGIPRhcLPT7pBfv89s2nq3fdzYfr91eXN52XYGsn2puDBBCtr7SjodE65cFZ8AqNX7czmnB0tBkUSStgUDhKszFottu1lxfsxZ_cQ07fFiq1n0LxFKObKS2l1wi6bQYNfPYfeJuWPLduvRBCA0qDDXp6gpbtREN_yGFy-dj_HbQBz0-AK97FMbvZh_IPB4jayp-70YUl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222701381</pqid></control><display><type>article</type><title>Role of genetic algorithms and artificial neural networks in predicting the phase behavior of colloidal delivery systems</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>AGATONOVIC-KUSTRIN, Snezana ; ALANY, Raid G</creator><creatorcontrib>AGATONOVIC-KUSTRIN, Snezana ; ALANY, Raid G</creatorcontrib><description>A genetic neural network (GNN) model was developed to predict the phase behavior of microemulsion (ME), lamellar liquid crystal (LC), and coarse emulsion forming systems (W/O EM and O/W EM) depending on the content of separate components in the system and cosurfactant nature. Eight pseudoternary phase triangles, containing ethyl oleate as the oil component and a mixture of two nonionic surfactants and n-alcohol or 1,2-alkanediol as a cosurfactant, were constructed and used for training, testing, and validation purposes. A total of 21 molecular descriptors were calculated for each cosurfactant. A genetic algorithm was used to select important molecular descriptors, and a supervised artificial neural network with two hidden layers was used to correlate selected descriptors and the weight ratio of components in the system with the observed phase behavior. The results proved the dominant role of the chemical composition, hydrophile-lipophile balance, length of hydrocarbon chain, molecular volume, and hydrocarbon volume of cosurfactant. The best GNN model, with 14 inputs and two hidden layers with 14 and 9 neurons, predicted the phase behavior for a new set of cosurfactants with 82.2% accuracy for ME, 87.5% for LC, 83.3% for the O/W EM, and 91.5% for the W/O EM region. This type of methodology can be applied in the evaluation of the cosurfactants for pharmaceutical formulations to minimize experimental effort.</description><identifier>ISSN: 0724-8741</identifier><identifier>EISSN: 1573-904X</identifier><identifier>DOI: 10.1023/A:1010913017092</identifier><identifier>PMID: 11496944</identifier><identifier>CODEN: PHREEB</identifier><language>eng</language><publisher>New York, NY: Springer</publisher><subject>Alcohol ; Algorithms ; Biological and medical sciences ; Chemistry, Pharmaceutical ; Colloids - chemistry ; Colloids - pharmacokinetics ; Drug delivery systems ; Drug Delivery Systems - methods ; General pharmacology ; Genetic algorithms ; Hydrocarbons ; Medical sciences ; Microemulsions ; Models, Genetic ; Molecular structure ; Neural networks ; Neural Networks (Computer) ; Pharmaceutical technology. Pharmaceutical industry ; Pharmaceuticals ; Pharmacology. Drug treatments ; Predictive Value of Tests ; Software ; Surface-Active Agents - chemistry ; Surface-Active Agents - pharmacokinetics ; Surfactants</subject><ispartof>Pharmaceutical research, 2001-07, Vol.18 (7), p.1049-1055</ispartof><rights>2001 INIST-CNRS</rights><rights>Copyright Kluwer Academic Publishers Jul 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-2102d300296939f8ef9a4c0a90c418c518c87e1fae6d4e3920d41f386818bb5c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1101179$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11496944$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>AGATONOVIC-KUSTRIN, Snezana</creatorcontrib><creatorcontrib>ALANY, Raid G</creatorcontrib><title>Role of genetic algorithms and artificial neural networks in predicting the phase behavior of colloidal delivery systems</title><title>Pharmaceutical research</title><addtitle>Pharm Res</addtitle><description>A genetic neural network (GNN) model was developed to predict the phase behavior of microemulsion (ME), lamellar liquid crystal (LC), and coarse emulsion forming systems (W/O EM and O/W EM) depending on the content of separate components in the system and cosurfactant nature. Eight pseudoternary phase triangles, containing ethyl oleate as the oil component and a mixture of two nonionic surfactants and n-alcohol or 1,2-alkanediol as a cosurfactant, were constructed and used for training, testing, and validation purposes. A total of 21 molecular descriptors were calculated for each cosurfactant. A genetic algorithm was used to select important molecular descriptors, and a supervised artificial neural network with two hidden layers was used to correlate selected descriptors and the weight ratio of components in the system with the observed phase behavior. The results proved the dominant role of the chemical composition, hydrophile-lipophile balance, length of hydrocarbon chain, molecular volume, and hydrocarbon volume of cosurfactant. The best GNN model, with 14 inputs and two hidden layers with 14 and 9 neurons, predicted the phase behavior for a new set of cosurfactants with 82.2% accuracy for ME, 87.5% for LC, 83.3% for the O/W EM, and 91.5% for the W/O EM region. This type of methodology can be applied in the evaluation of the cosurfactants for pharmaceutical formulations to minimize experimental effort.</description><subject>Alcohol</subject><subject>Algorithms</subject><subject>Biological and medical sciences</subject><subject>Chemistry, Pharmaceutical</subject><subject>Colloids - chemistry</subject><subject>Colloids - pharmacokinetics</subject><subject>Drug delivery systems</subject><subject>Drug Delivery Systems - methods</subject><subject>General pharmacology</subject><subject>Genetic algorithms</subject><subject>Hydrocarbons</subject><subject>Medical sciences</subject><subject>Microemulsions</subject><subject>Models, Genetic</subject><subject>Molecular structure</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Pharmaceutical technology. Pharmaceutical industry</subject><subject>Pharmaceuticals</subject><subject>Pharmacology. Drug treatments</subject><subject>Predictive Value of Tests</subject><subject>Software</subject><subject>Surface-Active Agents - chemistry</subject><subject>Surface-Active Agents - pharmacokinetics</subject><subject>Surfactants</subject><issn>0724-8741</issn><issn>1573-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNpdkEGLFDEQhYMo7uzq2ZsEEW-tVUlmknhbFl2FBUEUvDWZdPVM1nRnTNKr8--NOoJ4KN7le49Xj7EnCC8RhHx1-RoBwaIE1GDFPbbCtZadBfXlPluBFqozWuEZOy_lFgAMWvWQnSEqu7FKrdiPjykSTyPf0Uw1eO7iLuVQ91Phbh64yzWMwQcX-UxL_i31e8pfCw8zP2Qagq9h3vG6J37Yu0J8S3t3F1L-lepTjCkMzTZQDHeUj7wcS6WpPGIPRhcLPT7pBfv89s2nq3fdzYfr91eXN52XYGsn2puDBBCtr7SjodE65cFZ8AqNX7czmnB0tBkUSStgUDhKszFottu1lxfsxZ_cQ07fFiq1n0LxFKObKS2l1wi6bQYNfPYfeJuWPLduvRBCA0qDDXp6gpbtREN_yGFy-dj_HbQBz0-AK97FMbvZh_IPB4jayp-70YUl</recordid><startdate>20010701</startdate><enddate>20010701</enddate><creator>AGATONOVIC-KUSTRIN, Snezana</creator><creator>ALANY, Raid G</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20010701</creationdate><title>Role of genetic algorithms and artificial neural networks in predicting the phase behavior of colloidal delivery systems</title><author>AGATONOVIC-KUSTRIN, Snezana ; ALANY, Raid G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-2102d300296939f8ef9a4c0a90c418c518c87e1fae6d4e3920d41f386818bb5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Alcohol</topic><topic>Algorithms</topic><topic>Biological and medical sciences</topic><topic>Chemistry, Pharmaceutical</topic><topic>Colloids - chemistry</topic><topic>Colloids - pharmacokinetics</topic><topic>Drug delivery systems</topic><topic>Drug Delivery Systems - methods</topic><topic>General pharmacology</topic><topic>Genetic algorithms</topic><topic>Hydrocarbons</topic><topic>Medical sciences</topic><topic>Microemulsions</topic><topic>Models, Genetic</topic><topic>Molecular structure</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Pharmaceutical technology. Pharmaceutical industry</topic><topic>Pharmaceuticals</topic><topic>Pharmacology. Drug treatments</topic><topic>Predictive Value of Tests</topic><topic>Software</topic><topic>Surface-Active Agents - chemistry</topic><topic>Surface-Active Agents - pharmacokinetics</topic><topic>Surfactants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>AGATONOVIC-KUSTRIN, Snezana</creatorcontrib><creatorcontrib>ALANY, Raid G</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Pharmaceutical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>AGATONOVIC-KUSTRIN, Snezana</au><au>ALANY, Raid G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of genetic algorithms and artificial neural networks in predicting the phase behavior of colloidal delivery systems</atitle><jtitle>Pharmaceutical research</jtitle><addtitle>Pharm Res</addtitle><date>2001-07-01</date><risdate>2001</risdate><volume>18</volume><issue>7</issue><spage>1049</spage><epage>1055</epage><pages>1049-1055</pages><issn>0724-8741</issn><eissn>1573-904X</eissn><coden>PHREEB</coden><abstract>A genetic neural network (GNN) model was developed to predict the phase behavior of microemulsion (ME), lamellar liquid crystal (LC), and coarse emulsion forming systems (W/O EM and O/W EM) depending on the content of separate components in the system and cosurfactant nature. Eight pseudoternary phase triangles, containing ethyl oleate as the oil component and a mixture of two nonionic surfactants and n-alcohol or 1,2-alkanediol as a cosurfactant, were constructed and used for training, testing, and validation purposes. A total of 21 molecular descriptors were calculated for each cosurfactant. A genetic algorithm was used to select important molecular descriptors, and a supervised artificial neural network with two hidden layers was used to correlate selected descriptors and the weight ratio of components in the system with the observed phase behavior. The results proved the dominant role of the chemical composition, hydrophile-lipophile balance, length of hydrocarbon chain, molecular volume, and hydrocarbon volume of cosurfactant. The best GNN model, with 14 inputs and two hidden layers with 14 and 9 neurons, predicted the phase behavior for a new set of cosurfactants with 82.2% accuracy for ME, 87.5% for LC, 83.3% for the O/W EM, and 91.5% for the W/O EM region. This type of methodology can be applied in the evaluation of the cosurfactants for pharmaceutical formulations to minimize experimental effort.</abstract><cop>New York, NY</cop><pub>Springer</pub><pmid>11496944</pmid><doi>10.1023/A:1010913017092</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0724-8741
ispartof Pharmaceutical research, 2001-07, Vol.18 (7), p.1049-1055
issn 0724-8741
1573-904X
language eng
recordid cdi_proquest_miscellaneous_71071570
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Alcohol
Algorithms
Biological and medical sciences
Chemistry, Pharmaceutical
Colloids - chemistry
Colloids - pharmacokinetics
Drug delivery systems
Drug Delivery Systems - methods
General pharmacology
Genetic algorithms
Hydrocarbons
Medical sciences
Microemulsions
Models, Genetic
Molecular structure
Neural networks
Neural Networks (Computer)
Pharmaceutical technology. Pharmaceutical industry
Pharmaceuticals
Pharmacology. Drug treatments
Predictive Value of Tests
Software
Surface-Active Agents - chemistry
Surface-Active Agents - pharmacokinetics
Surfactants
title Role of genetic algorithms and artificial neural networks in predicting the phase behavior of colloidal delivery systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A59%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20genetic%20algorithms%20and%20artificial%20neural%20networks%20in%20predicting%20the%20phase%20behavior%20of%20colloidal%20delivery%20systems&rft.jtitle=Pharmaceutical%20research&rft.au=AGATONOVIC-KUSTRIN,%20Snezana&rft.date=2001-07-01&rft.volume=18&rft.issue=7&rft.spage=1049&rft.epage=1055&rft.pages=1049-1055&rft.issn=0724-8741&rft.eissn=1573-904X&rft.coden=PHREEB&rft_id=info:doi/10.1023/A:1010913017092&rft_dat=%3Cproquest_pubme%3E71071570%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222701381&rft_id=info:pmid/11496944&rfr_iscdi=true