Two-dimensional imaging of electronic wavefunctions in carbon nanotubes

The drive towards the development of molecular electronics is placing increasing demands on the level of control that must be exerted on the electronic structure of materials. Proposed device architectures ultimately rely on tuning the interactions between individual electronic states, which amounts...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2001-08, Vol.412 (6847), p.617-620
Hauptverfasser: Lemay, Serge G., Janssen, Jorg W., van den Hout, Michiel, Mooij, Maarten, Bronikowski, Michael J., Willis, Peter A., Smalley, Richard E., Kouwenhoven, Leo P., Dekker, Cees
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 620
container_issue 6847
container_start_page 617
container_title Nature (London)
container_volume 412
creator Lemay, Serge G.
Janssen, Jorg W.
van den Hout, Michiel
Mooij, Maarten
Bronikowski, Michael J.
Willis, Peter A.
Smalley, Richard E.
Kouwenhoven, Leo P.
Dekker, Cees
description The drive towards the development of molecular electronics is placing increasing demands on the level of control that must be exerted on the electronic structure of materials. Proposed device architectures ultimately rely on tuning the interactions between individual electronic states, which amounts to controlling the detailed spatial structure of the electronic wavefunctions in the constituent molecules 1 , 2 . Few experimental tools are available to probe this spatial structure directly, and the shapes of molecular wavefunctions are usually only known from theoretical investigations. Here we present scanning tunnelling spectroscopy measurements of the two-dimensional structure of individual wavefunctions in metallic single-walled carbon nanotubes; these measurements reveal spatial patterns that can be directly understood from the electronic structure of a single graphite sheet, and which represent an elegant illustration of Bloch's theorem 3 at the level of individual wavefunctions. We also observe energy-dependent interference patterns in the wavefunctions and exploit these to directly measure the linear electronic dispersion relation of the metallic single-walled carbon nanotube.
doi_str_mv 10.1038/35088013
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_71070958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A187988287</galeid><sourcerecordid>A187988287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c611t-3198c2c2c5378a26a93f610d4cbdebac266f839d792e0d532a846b960724b0643</originalsourceid><addsrcrecordid>eNqF0l2L1DAUBuAgijuOgr9AiiyiSNd8NUkvh0HXhUVBR7wMaXpasrTJbNK6-u-NzMjs6Iqci0Dy5IQcXoSeEnxGMFNvWIWVwoTdQwvCpSi5UPI-WmBMVYkVEyfoUUpXGOOKSP4QnRDCa1YTvkDnm5tQtm4En1zwZijcaHrn-yJ0BQxgpxi8s8WN-Qbd7O2UUSqcL6yJTfCFNz5McwPpMXrQmSHBk_26RF_evd2s35eXH88v1qvL0gpCppKRWlmaq2JSGSpMzTpBcMtt00JjLBWiU6xuZU0BtxWjRnHR1AJLyhssOFuiF7u-2xiuZ0iTHl2yMAzGQ5iTlgRLXFfqv5BKTCTLY1ii53_AqzDHPIpsMOeKiEpmVO5QbwbQzndhisb24CGaIXjoXN5eESVrpaiSh6ZH3m7dtb6Nzu5AuVoYnb2z66ujC9lM8H3qzZySvvj86di-_rddbb6uPxzrlzttY0gpQqe3MSch_tAE618R078jlumz_bzmZoT2APeZyuB0D0yyZuii8dalW46QStLDZ1I-8T3Ew9z_evMnQNLfPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204481657</pqid></control><display><type>article</type><title>Two-dimensional imaging of electronic wavefunctions in carbon nanotubes</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Lemay, Serge G. ; Janssen, Jorg W. ; van den Hout, Michiel ; Mooij, Maarten ; Bronikowski, Michael J. ; Willis, Peter A. ; Smalley, Richard E. ; Kouwenhoven, Leo P. ; Dekker, Cees</creator><creatorcontrib>Lemay, Serge G. ; Janssen, Jorg W. ; van den Hout, Michiel ; Mooij, Maarten ; Bronikowski, Michael J. ; Willis, Peter A. ; Smalley, Richard E. ; Kouwenhoven, Leo P. ; Dekker, Cees</creatorcontrib><description>The drive towards the development of molecular electronics is placing increasing demands on the level of control that must be exerted on the electronic structure of materials. Proposed device architectures ultimately rely on tuning the interactions between individual electronic states, which amounts to controlling the detailed spatial structure of the electronic wavefunctions in the constituent molecules 1 , 2 . Few experimental tools are available to probe this spatial structure directly, and the shapes of molecular wavefunctions are usually only known from theoretical investigations. Here we present scanning tunnelling spectroscopy measurements of the two-dimensional structure of individual wavefunctions in metallic single-walled carbon nanotubes; these measurements reveal spatial patterns that can be directly understood from the electronic structure of a single graphite sheet, and which represent an elegant illustration of Bloch's theorem 3 at the level of individual wavefunctions. We also observe energy-dependent interference patterns in the wavefunctions and exploit these to directly measure the linear electronic dispersion relation of the metallic single-walled carbon nanotube.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/35088013</identifier><identifier>PMID: 11493914</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Atoms &amp; subatomic particles ; Carbon ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic structure of nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals ; Electronics ; Exact sciences and technology ; Experiments ; Humanities and Social Sciences ; letter ; Molecules ; multidisciplinary ; Nanotechnology ; Physics ; Science ; Science (multidisciplinary) ; Spectroscopy</subject><ispartof>Nature (London), 2001-08, Vol.412 (6847), p.617-620</ispartof><rights>Macmillan Magazines Ltd. 2001</rights><rights>2001 INIST-CNRS</rights><rights>COPYRIGHT 2001 Nature Publishing Group</rights><rights>Copyright Macmillan Journals Ltd. Aug 9, 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c611t-3198c2c2c5378a26a93f610d4cbdebac266f839d792e0d532a846b960724b0643</citedby><cites>FETCH-LOGICAL-c611t-3198c2c2c5378a26a93f610d4cbdebac266f839d792e0d532a846b960724b0643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/35088013$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/35088013$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1111572$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11493914$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lemay, Serge G.</creatorcontrib><creatorcontrib>Janssen, Jorg W.</creatorcontrib><creatorcontrib>van den Hout, Michiel</creatorcontrib><creatorcontrib>Mooij, Maarten</creatorcontrib><creatorcontrib>Bronikowski, Michael J.</creatorcontrib><creatorcontrib>Willis, Peter A.</creatorcontrib><creatorcontrib>Smalley, Richard E.</creatorcontrib><creatorcontrib>Kouwenhoven, Leo P.</creatorcontrib><creatorcontrib>Dekker, Cees</creatorcontrib><title>Two-dimensional imaging of electronic wavefunctions in carbon nanotubes</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The drive towards the development of molecular electronics is placing increasing demands on the level of control that must be exerted on the electronic structure of materials. Proposed device architectures ultimately rely on tuning the interactions between individual electronic states, which amounts to controlling the detailed spatial structure of the electronic wavefunctions in the constituent molecules 1 , 2 . Few experimental tools are available to probe this spatial structure directly, and the shapes of molecular wavefunctions are usually only known from theoretical investigations. Here we present scanning tunnelling spectroscopy measurements of the two-dimensional structure of individual wavefunctions in metallic single-walled carbon nanotubes; these measurements reveal spatial patterns that can be directly understood from the electronic structure of a single graphite sheet, and which represent an elegant illustration of Bloch's theorem 3 at the level of individual wavefunctions. We also observe energy-dependent interference patterns in the wavefunctions and exploit these to directly measure the linear electronic dispersion relation of the metallic single-walled carbon nanotube.</description><subject>Atoms &amp; subatomic particles</subject><subject>Carbon</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic structure of nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Experiments</subject><subject>Humanities and Social Sciences</subject><subject>letter</subject><subject>Molecules</subject><subject>multidisciplinary</subject><subject>Nanotechnology</subject><subject>Physics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spectroscopy</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0l2L1DAUBuAgijuOgr9AiiyiSNd8NUkvh0HXhUVBR7wMaXpasrTJbNK6-u-NzMjs6Iqci0Dy5IQcXoSeEnxGMFNvWIWVwoTdQwvCpSi5UPI-WmBMVYkVEyfoUUpXGOOKSP4QnRDCa1YTvkDnm5tQtm4En1zwZijcaHrn-yJ0BQxgpxi8s8WN-Qbd7O2UUSqcL6yJTfCFNz5McwPpMXrQmSHBk_26RF_evd2s35eXH88v1qvL0gpCppKRWlmaq2JSGSpMzTpBcMtt00JjLBWiU6xuZU0BtxWjRnHR1AJLyhssOFuiF7u-2xiuZ0iTHl2yMAzGQ5iTlgRLXFfqv5BKTCTLY1ii53_AqzDHPIpsMOeKiEpmVO5QbwbQzndhisb24CGaIXjoXN5eESVrpaiSh6ZH3m7dtb6Nzu5AuVoYnb2z66ujC9lM8H3qzZySvvj86di-_rddbb6uPxzrlzttY0gpQqe3MSch_tAE618R078jlumz_bzmZoT2APeZyuB0D0yyZuii8dalW46QStLDZ1I-8T3Ew9z_evMnQNLfPA</recordid><startdate>20010809</startdate><enddate>20010809</enddate><creator>Lemay, Serge G.</creator><creator>Janssen, Jorg W.</creator><creator>van den Hout, Michiel</creator><creator>Mooij, Maarten</creator><creator>Bronikowski, Michael J.</creator><creator>Willis, Peter A.</creator><creator>Smalley, Richard E.</creator><creator>Kouwenhoven, Leo P.</creator><creator>Dekker, Cees</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20010809</creationdate><title>Two-dimensional imaging of electronic wavefunctions in carbon nanotubes</title><author>Lemay, Serge G. ; Janssen, Jorg W. ; van den Hout, Michiel ; Mooij, Maarten ; Bronikowski, Michael J. ; Willis, Peter A. ; Smalley, Richard E. ; Kouwenhoven, Leo P. ; Dekker, Cees</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c611t-3198c2c2c5378a26a93f610d4cbdebac266f839d792e0d532a846b960724b0643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Atoms &amp; subatomic particles</topic><topic>Carbon</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic structure of nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Experiments</topic><topic>Humanities and Social Sciences</topic><topic>letter</topic><topic>Molecules</topic><topic>multidisciplinary</topic><topic>Nanotechnology</topic><topic>Physics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lemay, Serge G.</creatorcontrib><creatorcontrib>Janssen, Jorg W.</creatorcontrib><creatorcontrib>van den Hout, Michiel</creatorcontrib><creatorcontrib>Mooij, Maarten</creatorcontrib><creatorcontrib>Bronikowski, Michael J.</creatorcontrib><creatorcontrib>Willis, Peter A.</creatorcontrib><creatorcontrib>Smalley, Richard E.</creatorcontrib><creatorcontrib>Kouwenhoven, Leo P.</creatorcontrib><creatorcontrib>Dekker, Cees</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lemay, Serge G.</au><au>Janssen, Jorg W.</au><au>van den Hout, Michiel</au><au>Mooij, Maarten</au><au>Bronikowski, Michael J.</au><au>Willis, Peter A.</au><au>Smalley, Richard E.</au><au>Kouwenhoven, Leo P.</au><au>Dekker, Cees</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-dimensional imaging of electronic wavefunctions in carbon nanotubes</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2001-08-09</date><risdate>2001</risdate><volume>412</volume><issue>6847</issue><spage>617</spage><epage>620</epage><pages>617-620</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>The drive towards the development of molecular electronics is placing increasing demands on the level of control that must be exerted on the electronic structure of materials. Proposed device architectures ultimately rely on tuning the interactions between individual electronic states, which amounts to controlling the detailed spatial structure of the electronic wavefunctions in the constituent molecules 1 , 2 . Few experimental tools are available to probe this spatial structure directly, and the shapes of molecular wavefunctions are usually only known from theoretical investigations. Here we present scanning tunnelling spectroscopy measurements of the two-dimensional structure of individual wavefunctions in metallic single-walled carbon nanotubes; these measurements reveal spatial patterns that can be directly understood from the electronic structure of a single graphite sheet, and which represent an elegant illustration of Bloch's theorem 3 at the level of individual wavefunctions. We also observe energy-dependent interference patterns in the wavefunctions and exploit these to directly measure the linear electronic dispersion relation of the metallic single-walled carbon nanotube.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>11493914</pmid><doi>10.1038/35088013</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2001-08, Vol.412 (6847), p.617-620
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_71070958
source Springer Nature - Complete Springer Journals; Nature Journals Online
subjects Atoms & subatomic particles
Carbon
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Electronic structure of nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals
Electronics
Exact sciences and technology
Experiments
Humanities and Social Sciences
letter
Molecules
multidisciplinary
Nanotechnology
Physics
Science
Science (multidisciplinary)
Spectroscopy
title Two-dimensional imaging of electronic wavefunctions in carbon nanotubes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T16%3A34%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-dimensional%20imaging%20of%20electronic%20wavefunctions%20in%20carbon%20nanotubes&rft.jtitle=Nature%20(London)&rft.au=Lemay,%20Serge%20G.&rft.date=2001-08-09&rft.volume=412&rft.issue=6847&rft.spage=617&rft.epage=620&rft.pages=617-620&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/35088013&rft_dat=%3Cgale_proqu%3EA187988287%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204481657&rft_id=info:pmid/11493914&rft_galeid=A187988287&rfr_iscdi=true