Rewiring the Olfactory Bulb: Changes in Odor Maps following Recovery from Nerve Transection
Recent studies have shown that axons from olfactory receptor subtypes converge onto glomeruli in fixed positions within the olfactory bulb. Different receptor subtypes project to different glomeruli, forming a spatial distribution of odor information or ‘odor maps’. Olfactory receptor neurons are co...
Gespeichert in:
Veröffentlicht in: | Chemical senses 2000-04, Vol.25 (2), p.199-205 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 205 |
---|---|
container_issue | 2 |
container_start_page | 199 |
container_title | Chemical senses |
container_volume | 25 |
creator | COSTANZO, R. M |
description | Recent studies have shown that axons from olfactory receptor subtypes converge onto glomeruli in fixed positions within the olfactory bulb. Different receptor subtypes project to different glomeruli, forming a spatial distribution of odor information or ‘odor maps’. Olfactory receptor neurons are continuously replaced throughout the life span of an animal, yet they preserve this highly localized mapping of receptor subtypes. In this study we used a transgenic mouse (P2-IRES-tau–lacZ) to map axons from a single receptor subtype (P2 receptors) in order to determine if regenerating axons were able to re-establish the P2 receptor map following nerve transection. Results confirm that P2 receptor axons retain their capacity to grow back to the olfactory bulb and converge onto glomeruli following nerve transection. However, the location and number of convergence sites was significantly altered compared to the control map. This change in the spatial distribution of axons alters the topography of odor mapping and has important implications for the processing of olfactory information. Findings from this study may explain why animals recovering from nerve injury require odor training before odor discrimination is restored. Future studies of olfactory receptor mapping could prove helpful in planning strategies to rewire connections in the brain and to restore function following injury or neurological disease. |
doi_str_mv | 10.1093/chemse/25.2.199 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71067195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71067195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-90cd175311eb352171b4d5ea1edff3ab1ae890118b38a1fdcf569430f1f375b53</originalsourceid><addsrcrecordid>eNqF0UFv1DAQBWALUdGlcOaGLIS4ZddjO3HCja4oRW1ZqSqogoPlOONuShIvdtLSf0-irABx4eSDvzey3xDyAtgSWCFWdottxBVPl3wJRfGILEBmMhFpKh6TBROqSPJMXh-SpzHeMgZS8PwJOQSmcmBcLci3S7yvQ93d0H6LdNM4Y3sfHujx0JRv6XpruhuMtO7opvKBXphdpM43jb-fIpdo_R2O2gXf0k8Y7pBeBdNFtH3tu2fkwJkm4vP9eUQ-n7y_Wp8m55sPH9fvzhMrc9knBbMVqFQAYClSDgpKWaVoACvnhCnBYF4wgLwUuQFXWZdmhRTMgRMqLVNxRN7Mc3fB_xgw9rqto8WmMR36IWoFLFNQ_B-Or-CSSzbCV__AWz-EbvyEHlvm2VTsiFYzssHHGNDpXahbEx40MD1tR8_b0TzVfMqNiZf7sUPZYvWXn9cxgtd7YKI1jRu7tHX846QouJhYMrM69vjz97UJ33Wmxk706fVXfaKyL2fs4liD-AVcrqc0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199260379</pqid></control><display><type>article</type><title>Rewiring the Olfactory Bulb: Changes in Odor Maps following Recovery from Nerve Transection</title><source>MEDLINE</source><source>Oxford Academic Journals (OUP)</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>COSTANZO, R. M</creator><creatorcontrib>COSTANZO, R. M</creatorcontrib><description>Recent studies have shown that axons from olfactory receptor subtypes converge onto glomeruli in fixed positions within the olfactory bulb. Different receptor subtypes project to different glomeruli, forming a spatial distribution of odor information or ‘odor maps’. Olfactory receptor neurons are continuously replaced throughout the life span of an animal, yet they preserve this highly localized mapping of receptor subtypes. In this study we used a transgenic mouse (P2-IRES-tau–lacZ) to map axons from a single receptor subtype (P2 receptors) in order to determine if regenerating axons were able to re-establish the P2 receptor map following nerve transection. Results confirm that P2 receptor axons retain their capacity to grow back to the olfactory bulb and converge onto glomeruli following nerve transection. However, the location and number of convergence sites was significantly altered compared to the control map. This change in the spatial distribution of axons alters the topography of odor mapping and has important implications for the processing of olfactory information. Findings from this study may explain why animals recovering from nerve injury require odor training before odor discrimination is restored. Future studies of olfactory receptor mapping could prove helpful in planning strategies to rewire connections in the brain and to restore function following injury or neurological disease.</description><identifier>ISSN: 0379-864X</identifier><identifier>ISSN: 1464-3553</identifier><identifier>EISSN: 1464-3553</identifier><identifier>DOI: 10.1093/chemse/25.2.199</identifier><identifier>PMID: 10781027</identifier><identifier>CODEN: CHSED8</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Anatomical correlates of behavior ; Animals ; Axons ; Behavioral psychophysiology ; Biological and medical sciences ; Discrimination Learning ; Fundamental and applied biological sciences. Psychology ; Mice ; Mice, Transgenic ; Nerve Regeneration ; Odorants ; Olfactory Bulb - physiology ; Olfactory Bulb - surgery ; Olfactory Pathways - physiology ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Receptors, Purinergic P2 - metabolism</subject><ispartof>Chemical senses, 2000-04, Vol.25 (2), p.199-205</ispartof><rights>2000 INIST-CNRS</rights><rights>Copyright Oxford University Press(England) Apr 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-90cd175311eb352171b4d5ea1edff3ab1ae890118b38a1fdcf569430f1f375b53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1439237$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10781027$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>COSTANZO, R. M</creatorcontrib><title>Rewiring the Olfactory Bulb: Changes in Odor Maps following Recovery from Nerve Transection</title><title>Chemical senses</title><addtitle>Chem. Senses</addtitle><description>Recent studies have shown that axons from olfactory receptor subtypes converge onto glomeruli in fixed positions within the olfactory bulb. Different receptor subtypes project to different glomeruli, forming a spatial distribution of odor information or ‘odor maps’. Olfactory receptor neurons are continuously replaced throughout the life span of an animal, yet they preserve this highly localized mapping of receptor subtypes. In this study we used a transgenic mouse (P2-IRES-tau–lacZ) to map axons from a single receptor subtype (P2 receptors) in order to determine if regenerating axons were able to re-establish the P2 receptor map following nerve transection. Results confirm that P2 receptor axons retain their capacity to grow back to the olfactory bulb and converge onto glomeruli following nerve transection. However, the location and number of convergence sites was significantly altered compared to the control map. This change in the spatial distribution of axons alters the topography of odor mapping and has important implications for the processing of olfactory information. Findings from this study may explain why animals recovering from nerve injury require odor training before odor discrimination is restored. Future studies of olfactory receptor mapping could prove helpful in planning strategies to rewire connections in the brain and to restore function following injury or neurological disease.</description><subject>Anatomical correlates of behavior</subject><subject>Animals</subject><subject>Axons</subject><subject>Behavioral psychophysiology</subject><subject>Biological and medical sciences</subject><subject>Discrimination Learning</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Nerve Regeneration</subject><subject>Odorants</subject><subject>Olfactory Bulb - physiology</subject><subject>Olfactory Bulb - surgery</subject><subject>Olfactory Pathways - physiology</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Receptors, Purinergic P2 - metabolism</subject><issn>0379-864X</issn><issn>1464-3553</issn><issn>1464-3553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0UFv1DAQBWALUdGlcOaGLIS4ZddjO3HCja4oRW1ZqSqogoPlOONuShIvdtLSf0-irABx4eSDvzey3xDyAtgSWCFWdottxBVPl3wJRfGILEBmMhFpKh6TBROqSPJMXh-SpzHeMgZS8PwJOQSmcmBcLci3S7yvQ93d0H6LdNM4Y3sfHujx0JRv6XpruhuMtO7opvKBXphdpM43jb-fIpdo_R2O2gXf0k8Y7pBeBdNFtH3tu2fkwJkm4vP9eUQ-n7y_Wp8m55sPH9fvzhMrc9knBbMVqFQAYClSDgpKWaVoACvnhCnBYF4wgLwUuQFXWZdmhRTMgRMqLVNxRN7Mc3fB_xgw9rqto8WmMR36IWoFLFNQ_B-Or-CSSzbCV__AWz-EbvyEHlvm2VTsiFYzssHHGNDpXahbEx40MD1tR8_b0TzVfMqNiZf7sUPZYvWXn9cxgtd7YKI1jRu7tHX846QouJhYMrM69vjz97UJ33Wmxk706fVXfaKyL2fs4liD-AVcrqc0</recordid><startdate>20000401</startdate><enddate>20000401</enddate><creator>COSTANZO, R. M</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20000401</creationdate><title>Rewiring the Olfactory Bulb: Changes in Odor Maps following Recovery from Nerve Transection</title><author>COSTANZO, R. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-90cd175311eb352171b4d5ea1edff3ab1ae890118b38a1fdcf569430f1f375b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Anatomical correlates of behavior</topic><topic>Animals</topic><topic>Axons</topic><topic>Behavioral psychophysiology</topic><topic>Biological and medical sciences</topic><topic>Discrimination Learning</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Nerve Regeneration</topic><topic>Odorants</topic><topic>Olfactory Bulb - physiology</topic><topic>Olfactory Bulb - surgery</topic><topic>Olfactory Pathways - physiology</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Receptors, Purinergic P2 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>COSTANZO, R. M</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Chemical senses</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>COSTANZO, R. M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rewiring the Olfactory Bulb: Changes in Odor Maps following Recovery from Nerve Transection</atitle><jtitle>Chemical senses</jtitle><addtitle>Chem. Senses</addtitle><date>2000-04-01</date><risdate>2000</risdate><volume>25</volume><issue>2</issue><spage>199</spage><epage>205</epage><pages>199-205</pages><issn>0379-864X</issn><issn>1464-3553</issn><eissn>1464-3553</eissn><coden>CHSED8</coden><abstract>Recent studies have shown that axons from olfactory receptor subtypes converge onto glomeruli in fixed positions within the olfactory bulb. Different receptor subtypes project to different glomeruli, forming a spatial distribution of odor information or ‘odor maps’. Olfactory receptor neurons are continuously replaced throughout the life span of an animal, yet they preserve this highly localized mapping of receptor subtypes. In this study we used a transgenic mouse (P2-IRES-tau–lacZ) to map axons from a single receptor subtype (P2 receptors) in order to determine if regenerating axons were able to re-establish the P2 receptor map following nerve transection. Results confirm that P2 receptor axons retain their capacity to grow back to the olfactory bulb and converge onto glomeruli following nerve transection. However, the location and number of convergence sites was significantly altered compared to the control map. This change in the spatial distribution of axons alters the topography of odor mapping and has important implications for the processing of olfactory information. Findings from this study may explain why animals recovering from nerve injury require odor training before odor discrimination is restored. Future studies of olfactory receptor mapping could prove helpful in planning strategies to rewire connections in the brain and to restore function following injury or neurological disease.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>10781027</pmid><doi>10.1093/chemse/25.2.199</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0379-864X |
ispartof | Chemical senses, 2000-04, Vol.25 (2), p.199-205 |
issn | 0379-864X 1464-3553 1464-3553 |
language | eng |
recordid | cdi_proquest_miscellaneous_71067195 |
source | MEDLINE; Oxford Academic Journals (OUP); Free Full-Text Journals in Chemistry; EZB Electronic Journals Library |
subjects | Anatomical correlates of behavior Animals Axons Behavioral psychophysiology Biological and medical sciences Discrimination Learning Fundamental and applied biological sciences. Psychology Mice Mice, Transgenic Nerve Regeneration Odorants Olfactory Bulb - physiology Olfactory Bulb - surgery Olfactory Pathways - physiology Psychology. Psychoanalysis. Psychiatry Psychology. Psychophysiology Receptors, Purinergic P2 - metabolism |
title | Rewiring the Olfactory Bulb: Changes in Odor Maps following Recovery from Nerve Transection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T19%3A17%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rewiring%20the%20Olfactory%20Bulb:%20Changes%20in%20Odor%20Maps%20following%20Recovery%20from%20Nerve%20Transection&rft.jtitle=Chemical%20senses&rft.au=COSTANZO,%20R.%20M&rft.date=2000-04-01&rft.volume=25&rft.issue=2&rft.spage=199&rft.epage=205&rft.pages=199-205&rft.issn=0379-864X&rft.eissn=1464-3553&rft.coden=CHSED8&rft_id=info:doi/10.1093/chemse/25.2.199&rft_dat=%3Cproquest_cross%3E71067195%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=199260379&rft_id=info:pmid/10781027&rfr_iscdi=true |