Metabolic engineering applications to renewable resource utilization

Lignocellulosic materials containing cellulose, hemicellulose, and lignin are the most abundant renewable organic resource on earth. The utilization of renewable resources for energy and chemicals is expected to increase in the near future. The conversion of both cellulose (glucose) and hemicellulos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current Opinion in Biotechnology 2000-04, Vol.11 (2), p.187-198
Hauptverfasser: Aristidou, Aristos, Penttilä, Merja
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 198
container_issue 2
container_start_page 187
container_title Current Opinion in Biotechnology
container_volume 11
creator Aristidou, Aristos
Penttilä, Merja
description Lignocellulosic materials containing cellulose, hemicellulose, and lignin are the most abundant renewable organic resource on earth. The utilization of renewable resources for energy and chemicals is expected to increase in the near future. The conversion of both cellulose (glucose) and hemicellulose (hexose and pentose) for the production of fuel ethanol is being studied intensively, with a view to developing a technically and economically viable bioprocess. Whereas the fermentation of glucose can be carried out efficiently, the bioconversion of the pentose fraction (xylose and arabinose, the main pentose sugars obtained on hydrolysis of hemicellulose), presents a challenge. A lot of attention has therefore been focused on genetically engineering strains that can efficiently utilize both glucose and pentoses, and convert them to useful compounds, such as ethanol. Metabolic strategies seek to generate efficient biocatalysts (bacteria and yeast) for the bioconversion of most hemicellulosic sugars to products that can be derived from the primary metabolism, such as ethanol. The metabolic engineering objectives so far have focused on higher yields, productivities and expanding the substrate and product spectra.
doi_str_mv 10.1016/S0958-1669(00)00085-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71065515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0958166900000859</els_id><sourcerecordid>71065515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-f7bc3c4f799f69117b2d057551ec87bfe44cf1adc084a417fd219993ba1eff1e3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMo7rr6E5SeRA_VmW3TNCeR9RNWPKjnkKaTJdJt16RV9Nfb_UC87WmG4Zn3hYexY4QLBMwuX0DyPMYsk2cA5wCQ81jusCHmQsaQjuUuG_4hA3YQwnsP8UTAPhsgiH7LkiG7eaJWF03lTET1zNVE3tWzSC8W_Um3rqlD1DaRp5q-dFFRv4Wm84airnWV-1khh2zP6irQ0WaO2Nvd7evkIZ4-3z9OrqexSXnexlYUJjGpFVLaTCKKYlwCF5wjmVwUltLUWNSlgTzVKQpbjlFKmRQayVqkZMRO17kL33x0FFo1d8FQVemami4ogZD1aXwriCJLE5kvQb4GjW9C8GTVwru59t8KQS09q5VntZSoANTKs5L938mmoCvmVP77Wovtgas1QL2PT0deBeOoNlQ6T6ZVZeO2VPwC0lWOGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17643985</pqid></control><display><type>article</type><title>Metabolic engineering applications to renewable resource utilization</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Aristidou, Aristos ; Penttilä, Merja</creator><creatorcontrib>Aristidou, Aristos ; Penttilä, Merja</creatorcontrib><description>Lignocellulosic materials containing cellulose, hemicellulose, and lignin are the most abundant renewable organic resource on earth. The utilization of renewable resources for energy and chemicals is expected to increase in the near future. The conversion of both cellulose (glucose) and hemicellulose (hexose and pentose) for the production of fuel ethanol is being studied intensively, with a view to developing a technically and economically viable bioprocess. Whereas the fermentation of glucose can be carried out efficiently, the bioconversion of the pentose fraction (xylose and arabinose, the main pentose sugars obtained on hydrolysis of hemicellulose), presents a challenge. A lot of attention has therefore been focused on genetically engineering strains that can efficiently utilize both glucose and pentoses, and convert them to useful compounds, such as ethanol. Metabolic strategies seek to generate efficient biocatalysts (bacteria and yeast) for the bioconversion of most hemicellulosic sugars to products that can be derived from the primary metabolism, such as ethanol. The metabolic engineering objectives so far have focused on higher yields, productivities and expanding the substrate and product spectra.</description><identifier>ISSN: 0958-1669</identifier><identifier>EISSN: 1879-0429</identifier><identifier>DOI: 10.1016/S0958-1669(00)00085-9</identifier><identifier>PMID: 10753763</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Bacteria - genetics ; Bacteria - metabolism ; Biomass ; Biotechnology - economics ; Biotechnology - methods ; cellulose ; Cellulose - metabolism ; Cellulose/hemicellulose depolymerization ; E. coli ; Fermentation ; Genetic Engineering - economics ; Genetic Engineering - methods ; Genetically engineered bacteria ; hemicellulose ; Klebsiella oxytoca ; lignin ; metabolic engineering ; Patents as Topic ; Pentose fermentation ; Pentoses - metabolism ; Polysaccharides - metabolism ; Yeasts - genetics ; Yeasts - metabolism</subject><ispartof>Current Opinion in Biotechnology, 2000-04, Vol.11 (2), p.187-198</ispartof><rights>2000 Elsevier Science Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-f7bc3c4f799f69117b2d057551ec87bfe44cf1adc084a417fd219993ba1eff1e3</citedby><cites>FETCH-LOGICAL-c458t-f7bc3c4f799f69117b2d057551ec87bfe44cf1adc084a417fd219993ba1eff1e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0958-1669(00)00085-9$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>313,314,780,784,792,3548,27921,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10753763$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aristidou, Aristos</creatorcontrib><creatorcontrib>Penttilä, Merja</creatorcontrib><title>Metabolic engineering applications to renewable resource utilization</title><title>Current Opinion in Biotechnology</title><addtitle>Curr Opin Biotechnol</addtitle><description>Lignocellulosic materials containing cellulose, hemicellulose, and lignin are the most abundant renewable organic resource on earth. The utilization of renewable resources for energy and chemicals is expected to increase in the near future. The conversion of both cellulose (glucose) and hemicellulose (hexose and pentose) for the production of fuel ethanol is being studied intensively, with a view to developing a technically and economically viable bioprocess. Whereas the fermentation of glucose can be carried out efficiently, the bioconversion of the pentose fraction (xylose and arabinose, the main pentose sugars obtained on hydrolysis of hemicellulose), presents a challenge. A lot of attention has therefore been focused on genetically engineering strains that can efficiently utilize both glucose and pentoses, and convert them to useful compounds, such as ethanol. Metabolic strategies seek to generate efficient biocatalysts (bacteria and yeast) for the bioconversion of most hemicellulosic sugars to products that can be derived from the primary metabolism, such as ethanol. The metabolic engineering objectives so far have focused on higher yields, productivities and expanding the substrate and product spectra.</description><subject>Bacteria - genetics</subject><subject>Bacteria - metabolism</subject><subject>Biomass</subject><subject>Biotechnology - economics</subject><subject>Biotechnology - methods</subject><subject>cellulose</subject><subject>Cellulose - metabolism</subject><subject>Cellulose/hemicellulose depolymerization</subject><subject>E. coli</subject><subject>Fermentation</subject><subject>Genetic Engineering - economics</subject><subject>Genetic Engineering - methods</subject><subject>Genetically engineered bacteria</subject><subject>hemicellulose</subject><subject>Klebsiella oxytoca</subject><subject>lignin</subject><subject>metabolic engineering</subject><subject>Patents as Topic</subject><subject>Pentose fermentation</subject><subject>Pentoses - metabolism</subject><subject>Polysaccharides - metabolism</subject><subject>Yeasts - genetics</subject><subject>Yeasts - metabolism</subject><issn>0958-1669</issn><issn>1879-0429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1LxDAQhoMo7rr6E5SeRA_VmW3TNCeR9RNWPKjnkKaTJdJt16RV9Nfb_UC87WmG4Zn3hYexY4QLBMwuX0DyPMYsk2cA5wCQ81jusCHmQsaQjuUuG_4hA3YQwnsP8UTAPhsgiH7LkiG7eaJWF03lTET1zNVE3tWzSC8W_Um3rqlD1DaRp5q-dFFRv4Wm84airnWV-1khh2zP6irQ0WaO2Nvd7evkIZ4-3z9OrqexSXnexlYUJjGpFVLaTCKKYlwCF5wjmVwUltLUWNSlgTzVKQpbjlFKmRQayVqkZMRO17kL33x0FFo1d8FQVemami4ogZD1aXwriCJLE5kvQb4GjW9C8GTVwru59t8KQS09q5VntZSoANTKs5L938mmoCvmVP77Wovtgas1QL2PT0deBeOoNlQ6T6ZVZeO2VPwC0lWOGQ</recordid><startdate>20000401</startdate><enddate>20000401</enddate><creator>Aristidou, Aristos</creator><creator>Penttilä, Merja</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20000401</creationdate><title>Metabolic engineering applications to renewable resource utilization</title><author>Aristidou, Aristos ; Penttilä, Merja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-f7bc3c4f799f69117b2d057551ec87bfe44cf1adc084a417fd219993ba1eff1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Bacteria - genetics</topic><topic>Bacteria - metabolism</topic><topic>Biomass</topic><topic>Biotechnology - economics</topic><topic>Biotechnology - methods</topic><topic>cellulose</topic><topic>Cellulose - metabolism</topic><topic>Cellulose/hemicellulose depolymerization</topic><topic>E. coli</topic><topic>Fermentation</topic><topic>Genetic Engineering - economics</topic><topic>Genetic Engineering - methods</topic><topic>Genetically engineered bacteria</topic><topic>hemicellulose</topic><topic>Klebsiella oxytoca</topic><topic>lignin</topic><topic>metabolic engineering</topic><topic>Patents as Topic</topic><topic>Pentose fermentation</topic><topic>Pentoses - metabolism</topic><topic>Polysaccharides - metabolism</topic><topic>Yeasts - genetics</topic><topic>Yeasts - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aristidou, Aristos</creatorcontrib><creatorcontrib>Penttilä, Merja</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Current Opinion in Biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aristidou, Aristos</au><au>Penttilä, Merja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic engineering applications to renewable resource utilization</atitle><jtitle>Current Opinion in Biotechnology</jtitle><addtitle>Curr Opin Biotechnol</addtitle><date>2000-04-01</date><risdate>2000</risdate><volume>11</volume><issue>2</issue><spage>187</spage><epage>198</epage><pages>187-198</pages><issn>0958-1669</issn><eissn>1879-0429</eissn><abstract>Lignocellulosic materials containing cellulose, hemicellulose, and lignin are the most abundant renewable organic resource on earth. The utilization of renewable resources for energy and chemicals is expected to increase in the near future. The conversion of both cellulose (glucose) and hemicellulose (hexose and pentose) for the production of fuel ethanol is being studied intensively, with a view to developing a technically and economically viable bioprocess. Whereas the fermentation of glucose can be carried out efficiently, the bioconversion of the pentose fraction (xylose and arabinose, the main pentose sugars obtained on hydrolysis of hemicellulose), presents a challenge. A lot of attention has therefore been focused on genetically engineering strains that can efficiently utilize both glucose and pentoses, and convert them to useful compounds, such as ethanol. Metabolic strategies seek to generate efficient biocatalysts (bacteria and yeast) for the bioconversion of most hemicellulosic sugars to products that can be derived from the primary metabolism, such as ethanol. The metabolic engineering objectives so far have focused on higher yields, productivities and expanding the substrate and product spectra.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>10753763</pmid><doi>10.1016/S0958-1669(00)00085-9</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0958-1669
ispartof Current Opinion in Biotechnology, 2000-04, Vol.11 (2), p.187-198
issn 0958-1669
1879-0429
language eng
recordid cdi_proquest_miscellaneous_71065515
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Bacteria - genetics
Bacteria - metabolism
Biomass
Biotechnology - economics
Biotechnology - methods
cellulose
Cellulose - metabolism
Cellulose/hemicellulose depolymerization
E. coli
Fermentation
Genetic Engineering - economics
Genetic Engineering - methods
Genetically engineered bacteria
hemicellulose
Klebsiella oxytoca
lignin
metabolic engineering
Patents as Topic
Pentose fermentation
Pentoses - metabolism
Polysaccharides - metabolism
Yeasts - genetics
Yeasts - metabolism
title Metabolic engineering applications to renewable resource utilization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A24%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20engineering%20applications%20to%20renewable%20resource%20utilization&rft.jtitle=Current%20Opinion%20in%20Biotechnology&rft.au=Aristidou,%20Aristos&rft.date=2000-04-01&rft.volume=11&rft.issue=2&rft.spage=187&rft.epage=198&rft.pages=187-198&rft.issn=0958-1669&rft.eissn=1879-0429&rft_id=info:doi/10.1016/S0958-1669(00)00085-9&rft_dat=%3Cproquest_cross%3E71065515%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17643985&rft_id=info:pmid/10753763&rft_els_id=S0958166900000859&rfr_iscdi=true