Metabolic engineering applications to renewable resource utilization
Lignocellulosic materials containing cellulose, hemicellulose, and lignin are the most abundant renewable organic resource on earth. The utilization of renewable resources for energy and chemicals is expected to increase in the near future. The conversion of both cellulose (glucose) and hemicellulos...
Gespeichert in:
Veröffentlicht in: | Current Opinion in Biotechnology 2000-04, Vol.11 (2), p.187-198 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 198 |
---|---|
container_issue | 2 |
container_start_page | 187 |
container_title | Current Opinion in Biotechnology |
container_volume | 11 |
creator | Aristidou, Aristos Penttilä, Merja |
description | Lignocellulosic materials containing cellulose, hemicellulose, and lignin are the most abundant renewable organic resource on earth. The utilization of renewable resources for energy and chemicals is expected to increase in the near future. The conversion of both cellulose (glucose) and hemicellulose (hexose and pentose) for the production of fuel ethanol is being studied intensively, with a view to developing a technically and economically viable bioprocess. Whereas the fermentation of glucose can be carried out efficiently, the bioconversion of the pentose fraction (xylose and arabinose, the main pentose sugars obtained on hydrolysis of hemicellulose), presents a challenge. A lot of attention has therefore been focused on genetically engineering strains that can efficiently utilize both glucose and pentoses, and convert them to useful compounds, such as ethanol. Metabolic strategies seek to generate efficient biocatalysts (bacteria and yeast) for the bioconversion of most hemicellulosic sugars to products that can be derived from the primary metabolism, such as ethanol. The metabolic engineering objectives so far have focused on higher yields, productivities and expanding the substrate and product spectra. |
doi_str_mv | 10.1016/S0958-1669(00)00085-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71065515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0958166900000859</els_id><sourcerecordid>71065515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-f7bc3c4f799f69117b2d057551ec87bfe44cf1adc084a417fd219993ba1eff1e3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMo7rr6E5SeRA_VmW3TNCeR9RNWPKjnkKaTJdJt16RV9Nfb_UC87WmG4Zn3hYexY4QLBMwuX0DyPMYsk2cA5wCQ81jusCHmQsaQjuUuG_4hA3YQwnsP8UTAPhsgiH7LkiG7eaJWF03lTET1zNVE3tWzSC8W_Um3rqlD1DaRp5q-dFFRv4Wm84airnWV-1khh2zP6irQ0WaO2Nvd7evkIZ4-3z9OrqexSXnexlYUJjGpFVLaTCKKYlwCF5wjmVwUltLUWNSlgTzVKQpbjlFKmRQayVqkZMRO17kL33x0FFo1d8FQVemami4ogZD1aXwriCJLE5kvQb4GjW9C8GTVwru59t8KQS09q5VntZSoANTKs5L938mmoCvmVP77Wovtgas1QL2PT0deBeOoNlQ6T6ZVZeO2VPwC0lWOGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17643985</pqid></control><display><type>article</type><title>Metabolic engineering applications to renewable resource utilization</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Aristidou, Aristos ; Penttilä, Merja</creator><creatorcontrib>Aristidou, Aristos ; Penttilä, Merja</creatorcontrib><description>Lignocellulosic materials containing cellulose, hemicellulose, and lignin are the most abundant renewable organic resource on earth. The utilization of renewable resources for energy and chemicals is expected to increase in the near future. The conversion of both cellulose (glucose) and hemicellulose (hexose and pentose) for the production of fuel ethanol is being studied intensively, with a view to developing a technically and economically viable bioprocess. Whereas the fermentation of glucose can be carried out efficiently, the bioconversion of the pentose fraction (xylose and arabinose, the main pentose sugars obtained on hydrolysis of hemicellulose), presents a challenge. A lot of attention has therefore been focused on genetically engineering strains that can efficiently utilize both glucose and pentoses, and convert them to useful compounds, such as ethanol. Metabolic strategies seek to generate efficient biocatalysts (bacteria and yeast) for the bioconversion of most hemicellulosic sugars to products that can be derived from the primary metabolism, such as ethanol. The metabolic engineering objectives so far have focused on higher yields, productivities and expanding the substrate and product spectra.</description><identifier>ISSN: 0958-1669</identifier><identifier>EISSN: 1879-0429</identifier><identifier>DOI: 10.1016/S0958-1669(00)00085-9</identifier><identifier>PMID: 10753763</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Bacteria - genetics ; Bacteria - metabolism ; Biomass ; Biotechnology - economics ; Biotechnology - methods ; cellulose ; Cellulose - metabolism ; Cellulose/hemicellulose depolymerization ; E. coli ; Fermentation ; Genetic Engineering - economics ; Genetic Engineering - methods ; Genetically engineered bacteria ; hemicellulose ; Klebsiella oxytoca ; lignin ; metabolic engineering ; Patents as Topic ; Pentose fermentation ; Pentoses - metabolism ; Polysaccharides - metabolism ; Yeasts - genetics ; Yeasts - metabolism</subject><ispartof>Current Opinion in Biotechnology, 2000-04, Vol.11 (2), p.187-198</ispartof><rights>2000 Elsevier Science Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-f7bc3c4f799f69117b2d057551ec87bfe44cf1adc084a417fd219993ba1eff1e3</citedby><cites>FETCH-LOGICAL-c458t-f7bc3c4f799f69117b2d057551ec87bfe44cf1adc084a417fd219993ba1eff1e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0958-1669(00)00085-9$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>313,314,780,784,792,3548,27921,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10753763$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aristidou, Aristos</creatorcontrib><creatorcontrib>Penttilä, Merja</creatorcontrib><title>Metabolic engineering applications to renewable resource utilization</title><title>Current Opinion in Biotechnology</title><addtitle>Curr Opin Biotechnol</addtitle><description>Lignocellulosic materials containing cellulose, hemicellulose, and lignin are the most abundant renewable organic resource on earth. The utilization of renewable resources for energy and chemicals is expected to increase in the near future. The conversion of both cellulose (glucose) and hemicellulose (hexose and pentose) for the production of fuel ethanol is being studied intensively, with a view to developing a technically and economically viable bioprocess. Whereas the fermentation of glucose can be carried out efficiently, the bioconversion of the pentose fraction (xylose and arabinose, the main pentose sugars obtained on hydrolysis of hemicellulose), presents a challenge. A lot of attention has therefore been focused on genetically engineering strains that can efficiently utilize both glucose and pentoses, and convert them to useful compounds, such as ethanol. Metabolic strategies seek to generate efficient biocatalysts (bacteria and yeast) for the bioconversion of most hemicellulosic sugars to products that can be derived from the primary metabolism, such as ethanol. The metabolic engineering objectives so far have focused on higher yields, productivities and expanding the substrate and product spectra.</description><subject>Bacteria - genetics</subject><subject>Bacteria - metabolism</subject><subject>Biomass</subject><subject>Biotechnology - economics</subject><subject>Biotechnology - methods</subject><subject>cellulose</subject><subject>Cellulose - metabolism</subject><subject>Cellulose/hemicellulose depolymerization</subject><subject>E. coli</subject><subject>Fermentation</subject><subject>Genetic Engineering - economics</subject><subject>Genetic Engineering - methods</subject><subject>Genetically engineered bacteria</subject><subject>hemicellulose</subject><subject>Klebsiella oxytoca</subject><subject>lignin</subject><subject>metabolic engineering</subject><subject>Patents as Topic</subject><subject>Pentose fermentation</subject><subject>Pentoses - metabolism</subject><subject>Polysaccharides - metabolism</subject><subject>Yeasts - genetics</subject><subject>Yeasts - metabolism</subject><issn>0958-1669</issn><issn>1879-0429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1LxDAQhoMo7rr6E5SeRA_VmW3TNCeR9RNWPKjnkKaTJdJt16RV9Nfb_UC87WmG4Zn3hYexY4QLBMwuX0DyPMYsk2cA5wCQ81jusCHmQsaQjuUuG_4hA3YQwnsP8UTAPhsgiH7LkiG7eaJWF03lTET1zNVE3tWzSC8W_Um3rqlD1DaRp5q-dFFRv4Wm84airnWV-1khh2zP6irQ0WaO2Nvd7evkIZ4-3z9OrqexSXnexlYUJjGpFVLaTCKKYlwCF5wjmVwUltLUWNSlgTzVKQpbjlFKmRQayVqkZMRO17kL33x0FFo1d8FQVemami4ogZD1aXwriCJLE5kvQb4GjW9C8GTVwru59t8KQS09q5VntZSoANTKs5L938mmoCvmVP77Wovtgas1QL2PT0deBeOoNlQ6T6ZVZeO2VPwC0lWOGQ</recordid><startdate>20000401</startdate><enddate>20000401</enddate><creator>Aristidou, Aristos</creator><creator>Penttilä, Merja</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20000401</creationdate><title>Metabolic engineering applications to renewable resource utilization</title><author>Aristidou, Aristos ; Penttilä, Merja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-f7bc3c4f799f69117b2d057551ec87bfe44cf1adc084a417fd219993ba1eff1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Bacteria - genetics</topic><topic>Bacteria - metabolism</topic><topic>Biomass</topic><topic>Biotechnology - economics</topic><topic>Biotechnology - methods</topic><topic>cellulose</topic><topic>Cellulose - metabolism</topic><topic>Cellulose/hemicellulose depolymerization</topic><topic>E. coli</topic><topic>Fermentation</topic><topic>Genetic Engineering - economics</topic><topic>Genetic Engineering - methods</topic><topic>Genetically engineered bacteria</topic><topic>hemicellulose</topic><topic>Klebsiella oxytoca</topic><topic>lignin</topic><topic>metabolic engineering</topic><topic>Patents as Topic</topic><topic>Pentose fermentation</topic><topic>Pentoses - metabolism</topic><topic>Polysaccharides - metabolism</topic><topic>Yeasts - genetics</topic><topic>Yeasts - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aristidou, Aristos</creatorcontrib><creatorcontrib>Penttilä, Merja</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Current Opinion in Biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aristidou, Aristos</au><au>Penttilä, Merja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic engineering applications to renewable resource utilization</atitle><jtitle>Current Opinion in Biotechnology</jtitle><addtitle>Curr Opin Biotechnol</addtitle><date>2000-04-01</date><risdate>2000</risdate><volume>11</volume><issue>2</issue><spage>187</spage><epage>198</epage><pages>187-198</pages><issn>0958-1669</issn><eissn>1879-0429</eissn><abstract>Lignocellulosic materials containing cellulose, hemicellulose, and lignin are the most abundant renewable organic resource on earth. The utilization of renewable resources for energy and chemicals is expected to increase in the near future. The conversion of both cellulose (glucose) and hemicellulose (hexose and pentose) for the production of fuel ethanol is being studied intensively, with a view to developing a technically and economically viable bioprocess. Whereas the fermentation of glucose can be carried out efficiently, the bioconversion of the pentose fraction (xylose and arabinose, the main pentose sugars obtained on hydrolysis of hemicellulose), presents a challenge. A lot of attention has therefore been focused on genetically engineering strains that can efficiently utilize both glucose and pentoses, and convert them to useful compounds, such as ethanol. Metabolic strategies seek to generate efficient biocatalysts (bacteria and yeast) for the bioconversion of most hemicellulosic sugars to products that can be derived from the primary metabolism, such as ethanol. The metabolic engineering objectives so far have focused on higher yields, productivities and expanding the substrate and product spectra.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>10753763</pmid><doi>10.1016/S0958-1669(00)00085-9</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0958-1669 |
ispartof | Current Opinion in Biotechnology, 2000-04, Vol.11 (2), p.187-198 |
issn | 0958-1669 1879-0429 |
language | eng |
recordid | cdi_proquest_miscellaneous_71065515 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Bacteria - genetics Bacteria - metabolism Biomass Biotechnology - economics Biotechnology - methods cellulose Cellulose - metabolism Cellulose/hemicellulose depolymerization E. coli Fermentation Genetic Engineering - economics Genetic Engineering - methods Genetically engineered bacteria hemicellulose Klebsiella oxytoca lignin metabolic engineering Patents as Topic Pentose fermentation Pentoses - metabolism Polysaccharides - metabolism Yeasts - genetics Yeasts - metabolism |
title | Metabolic engineering applications to renewable resource utilization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A24%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20engineering%20applications%20to%20renewable%20resource%20utilization&rft.jtitle=Current%20Opinion%20in%20Biotechnology&rft.au=Aristidou,%20Aristos&rft.date=2000-04-01&rft.volume=11&rft.issue=2&rft.spage=187&rft.epage=198&rft.pages=187-198&rft.issn=0958-1669&rft.eissn=1879-0429&rft_id=info:doi/10.1016/S0958-1669(00)00085-9&rft_dat=%3Cproquest_cross%3E71065515%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17643985&rft_id=info:pmid/10753763&rft_els_id=S0958166900000859&rfr_iscdi=true |