Formate protects stationary‐phase Escherichia coli and Salmonella cells from killing by a cationic antimicrobial peptide

For a sustained infection, enteric bacterial pathogens must evade, resist or tolerate a variety of antimicrobial host defence peptides and proteins. We report here that specific organic acids protect stationary‐phase Escherichia coli and Salmonella cells from killing by a potent antimicrobial peptid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular microbiology 2000-03, Vol.35 (6), p.1518-1529
Hauptverfasser: Barker, Helen C., Kinsella, Niamh, Jaspe, Almudena, Friedrich, Thorsten, O’Connor, C. David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1529
container_issue 6
container_start_page 1518
container_title Molecular microbiology
container_volume 35
creator Barker, Helen C.
Kinsella, Niamh
Jaspe, Almudena
Friedrich, Thorsten
O’Connor, C. David
description For a sustained infection, enteric bacterial pathogens must evade, resist or tolerate a variety of antimicrobial host defence peptides and proteins. We report here that specific organic acids protect stationary‐phase Escherichia coli and Salmonella cells from killing by a potent antimicrobial peptide derived from the human bactericidal/permeability‐increasing protein (BPI). BPI‐derived peptide P2 rapidly halted oxygen consumption by stationary‐phase cells preincubated with glucose, pyruvate or malate and caused a 109‐fold drop in cell viability within 90 min of addition. In marked contrast, O2 consumption and viability were not significantly affected in stationary‐phase cells preincubated with formate or succinate. Experiments with fdhH, fdoG, fdnG, selC and sdhO mutants indicate that protection by formate and succinate requires their oxidation by the Fdh‐N formate dehydrogenase and succinate dehydrogenase respectively. Protection was also dependent on the BipA GTPase but did not require the RpoS sigma factor. We conclude that the primary lesion caused by this cationic peptide is not gross permeabilization of the bacterial cytoplasmic membrane but may involve specific disruption of the respiratory chain. Because P2 shares sequence similarity with a range of other antimicrobial peptides, its cytotoxic mechanism has broader significance. Additionally, protective quantities of formate are secreted by E. coli and Salmonella during growth suggesting that such compounds are important determinants of bacterial survival in the host.
doi_str_mv 10.1046/j.1365-2958.2000.01820.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71058465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71058465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4230-8afed534cb1cfb4da5ae27c9f8ee2b5f89c7f1a25fef7d896b3e20977a76402b3</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhi0EokvhFZDFgVvC2I7t5MABVS1UasUBkLhZjjNmvSRxiLOiy4lH4Bl5EpxuhRAXuNjW-JtfHn-EUAYlg0q92JVMKFnwRtYlB4ASWM2hvLlHNr8v7pMNNBIKUfOPJ-RRSjsAJkCJh-SEgVbAJNuQbxdxHuyCdJrjgm5JNC12CXG08-Hn9x_T1iak58ltcQ5uGyx1sQ_Ujh19Z_shjtj3uZbXRP0cB_o59H0YP9H2QHP9Nim4zC9hCG6ObbA9nXBaQoePyQNv-4RP7vZT8uHi_P3Zm-Lq7evLs1dXhau4gKK2HjspKtcy59uqs9Ii167xNSJvpa8bpz2zXHr0uqsb1Qrk0GhttaqAt-KUPD_m5hG_7DEtZghpfbIdMe6T0QxkXSn5T5BpxRTTVQaf_QXu4n4e8xCGNUpyUEplqD5CeeyUZvRmmsOQv9UwMKtFszOrLLPKMqtFc2vR3OTWp3f5-3bA7o_Go7YMvDwCX0OPh_8ONtfXl-tJ_AI7466F</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196520666</pqid></control><display><type>article</type><title>Formate protects stationary‐phase Escherichia coli and Salmonella cells from killing by a cationic antimicrobial peptide</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Free Full-Text Journals in Chemistry</source><creator>Barker, Helen C. ; Kinsella, Niamh ; Jaspe, Almudena ; Friedrich, Thorsten ; O’Connor, C. David</creator><creatorcontrib>Barker, Helen C. ; Kinsella, Niamh ; Jaspe, Almudena ; Friedrich, Thorsten ; O’Connor, C. David</creatorcontrib><description>For a sustained infection, enteric bacterial pathogens must evade, resist or tolerate a variety of antimicrobial host defence peptides and proteins. We report here that specific organic acids protect stationary‐phase Escherichia coli and Salmonella cells from killing by a potent antimicrobial peptide derived from the human bactericidal/permeability‐increasing protein (BPI). BPI‐derived peptide P2 rapidly halted oxygen consumption by stationary‐phase cells preincubated with glucose, pyruvate or malate and caused a 109‐fold drop in cell viability within 90 min of addition. In marked contrast, O2 consumption and viability were not significantly affected in stationary‐phase cells preincubated with formate or succinate. Experiments with fdhH, fdoG, fdnG, selC and sdhO mutants indicate that protection by formate and succinate requires their oxidation by the Fdh‐N formate dehydrogenase and succinate dehydrogenase respectively. Protection was also dependent on the BipA GTPase but did not require the RpoS sigma factor. We conclude that the primary lesion caused by this cationic peptide is not gross permeabilization of the bacterial cytoplasmic membrane but may involve specific disruption of the respiratory chain. Because P2 shares sequence similarity with a range of other antimicrobial peptides, its cytotoxic mechanism has broader significance. Additionally, protective quantities of formate are secreted by E. coli and Salmonella during growth suggesting that such compounds are important determinants of bacterial survival in the host.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1046/j.1365-2958.2000.01820.x</identifier><identifier>PMID: 10760151</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Amino Acid Sequence ; Anti-Bacterial Agents - pharmacology ; Antimicrobial Cationic Peptides ; Bacterial Proteins - biosynthesis ; Bacterial Proteins - drug effects ; Bacterial Proteins - metabolism ; bactericidal/permeability-increasing protein ; BipA protein ; Blood Proteins - pharmacology ; Cell Division - drug effects ; DNA, Bacterial - biosynthesis ; DNA, Bacterial - drug effects ; Escherichia coli ; Escherichia coli - drug effects ; Escherichia coli - growth &amp; development ; Escherichia coli - metabolism ; Escherichia coli Proteins ; Fermentation ; formate dehydrogenase ; Formate Dehydrogenases - metabolism ; Formates - pharmacology ; formic acid ; Glucose - pharmacology ; GTP Phosphohydrolases - drug effects ; GTP Phosphohydrolases - metabolism ; Humans ; Malates - pharmacology ; Membrane Proteins ; Molecular Sequence Data ; Oxygen - metabolism ; Peptide Fragments - pharmacology ; Phosphoproteins ; Pyruvic Acid - pharmacology ; Salmonella ; Salmonella - drug effects ; Sigma Factor - metabolism ; succinic acid</subject><ispartof>Molecular microbiology, 2000-03, Vol.35 (6), p.1518-1529</ispartof><rights>Copyright Blackwell Scientific Publications Ltd. Mar 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4230-8afed534cb1cfb4da5ae27c9f8ee2b5f89c7f1a25fef7d896b3e20977a76402b3</citedby><cites>FETCH-LOGICAL-c4230-8afed534cb1cfb4da5ae27c9f8ee2b5f89c7f1a25fef7d896b3e20977a76402b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1365-2958.2000.01820.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1365-2958.2000.01820.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10760151$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barker, Helen C.</creatorcontrib><creatorcontrib>Kinsella, Niamh</creatorcontrib><creatorcontrib>Jaspe, Almudena</creatorcontrib><creatorcontrib>Friedrich, Thorsten</creatorcontrib><creatorcontrib>O’Connor, C. David</creatorcontrib><title>Formate protects stationary‐phase Escherichia coli and Salmonella cells from killing by a cationic antimicrobial peptide</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>For a sustained infection, enteric bacterial pathogens must evade, resist or tolerate a variety of antimicrobial host defence peptides and proteins. We report here that specific organic acids protect stationary‐phase Escherichia coli and Salmonella cells from killing by a potent antimicrobial peptide derived from the human bactericidal/permeability‐increasing protein (BPI). BPI‐derived peptide P2 rapidly halted oxygen consumption by stationary‐phase cells preincubated with glucose, pyruvate or malate and caused a 109‐fold drop in cell viability within 90 min of addition. In marked contrast, O2 consumption and viability were not significantly affected in stationary‐phase cells preincubated with formate or succinate. Experiments with fdhH, fdoG, fdnG, selC and sdhO mutants indicate that protection by formate and succinate requires their oxidation by the Fdh‐N formate dehydrogenase and succinate dehydrogenase respectively. Protection was also dependent on the BipA GTPase but did not require the RpoS sigma factor. We conclude that the primary lesion caused by this cationic peptide is not gross permeabilization of the bacterial cytoplasmic membrane but may involve specific disruption of the respiratory chain. Because P2 shares sequence similarity with a range of other antimicrobial peptides, its cytotoxic mechanism has broader significance. Additionally, protective quantities of formate are secreted by E. coli and Salmonella during growth suggesting that such compounds are important determinants of bacterial survival in the host.</description><subject>Amino Acid Sequence</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antimicrobial Cationic Peptides</subject><subject>Bacterial Proteins - biosynthesis</subject><subject>Bacterial Proteins - drug effects</subject><subject>Bacterial Proteins - metabolism</subject><subject>bactericidal/permeability-increasing protein</subject><subject>BipA protein</subject><subject>Blood Proteins - pharmacology</subject><subject>Cell Division - drug effects</subject><subject>DNA, Bacterial - biosynthesis</subject><subject>DNA, Bacterial - drug effects</subject><subject>Escherichia coli</subject><subject>Escherichia coli - drug effects</subject><subject>Escherichia coli - growth &amp; development</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins</subject><subject>Fermentation</subject><subject>formate dehydrogenase</subject><subject>Formate Dehydrogenases - metabolism</subject><subject>Formates - pharmacology</subject><subject>formic acid</subject><subject>Glucose - pharmacology</subject><subject>GTP Phosphohydrolases - drug effects</subject><subject>GTP Phosphohydrolases - metabolism</subject><subject>Humans</subject><subject>Malates - pharmacology</subject><subject>Membrane Proteins</subject><subject>Molecular Sequence Data</subject><subject>Oxygen - metabolism</subject><subject>Peptide Fragments - pharmacology</subject><subject>Phosphoproteins</subject><subject>Pyruvic Acid - pharmacology</subject><subject>Salmonella</subject><subject>Salmonella - drug effects</subject><subject>Sigma Factor - metabolism</subject><subject>succinic acid</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFu1DAQhi0EokvhFZDFgVvC2I7t5MABVS1UasUBkLhZjjNmvSRxiLOiy4lH4Bl5EpxuhRAXuNjW-JtfHn-EUAYlg0q92JVMKFnwRtYlB4ASWM2hvLlHNr8v7pMNNBIKUfOPJ-RRSjsAJkCJh-SEgVbAJNuQbxdxHuyCdJrjgm5JNC12CXG08-Hn9x_T1iak58ltcQ5uGyx1sQ_Ujh19Z_shjtj3uZbXRP0cB_o59H0YP9H2QHP9Nim4zC9hCG6ObbA9nXBaQoePyQNv-4RP7vZT8uHi_P3Zm-Lq7evLs1dXhau4gKK2HjspKtcy59uqs9Ii167xNSJvpa8bpz2zXHr0uqsb1Qrk0GhttaqAt-KUPD_m5hG_7DEtZghpfbIdMe6T0QxkXSn5T5BpxRTTVQaf_QXu4n4e8xCGNUpyUEplqD5CeeyUZvRmmsOQv9UwMKtFszOrLLPKMqtFc2vR3OTWp3f5-3bA7o_Go7YMvDwCX0OPh_8ONtfXl-tJ_AI7466F</recordid><startdate>200003</startdate><enddate>200003</enddate><creator>Barker, Helen C.</creator><creator>Kinsella, Niamh</creator><creator>Jaspe, Almudena</creator><creator>Friedrich, Thorsten</creator><creator>O’Connor, C. David</creator><general>Blackwell Science Ltd</general><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200003</creationdate><title>Formate protects stationary‐phase Escherichia coli and Salmonella cells from killing by a cationic antimicrobial peptide</title><author>Barker, Helen C. ; Kinsella, Niamh ; Jaspe, Almudena ; Friedrich, Thorsten ; O’Connor, C. David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4230-8afed534cb1cfb4da5ae27c9f8ee2b5f89c7f1a25fef7d896b3e20977a76402b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Amino Acid Sequence</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antimicrobial Cationic Peptides</topic><topic>Bacterial Proteins - biosynthesis</topic><topic>Bacterial Proteins - drug effects</topic><topic>Bacterial Proteins - metabolism</topic><topic>bactericidal/permeability-increasing protein</topic><topic>BipA protein</topic><topic>Blood Proteins - pharmacology</topic><topic>Cell Division - drug effects</topic><topic>DNA, Bacterial - biosynthesis</topic><topic>DNA, Bacterial - drug effects</topic><topic>Escherichia coli</topic><topic>Escherichia coli - drug effects</topic><topic>Escherichia coli - growth &amp; development</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins</topic><topic>Fermentation</topic><topic>formate dehydrogenase</topic><topic>Formate Dehydrogenases - metabolism</topic><topic>Formates - pharmacology</topic><topic>formic acid</topic><topic>Glucose - pharmacology</topic><topic>GTP Phosphohydrolases - drug effects</topic><topic>GTP Phosphohydrolases - metabolism</topic><topic>Humans</topic><topic>Malates - pharmacology</topic><topic>Membrane Proteins</topic><topic>Molecular Sequence Data</topic><topic>Oxygen - metabolism</topic><topic>Peptide Fragments - pharmacology</topic><topic>Phosphoproteins</topic><topic>Pyruvic Acid - pharmacology</topic><topic>Salmonella</topic><topic>Salmonella - drug effects</topic><topic>Sigma Factor - metabolism</topic><topic>succinic acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barker, Helen C.</creatorcontrib><creatorcontrib>Kinsella, Niamh</creatorcontrib><creatorcontrib>Jaspe, Almudena</creatorcontrib><creatorcontrib>Friedrich, Thorsten</creatorcontrib><creatorcontrib>O’Connor, C. David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barker, Helen C.</au><au>Kinsella, Niamh</au><au>Jaspe, Almudena</au><au>Friedrich, Thorsten</au><au>O’Connor, C. David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formate protects stationary‐phase Escherichia coli and Salmonella cells from killing by a cationic antimicrobial peptide</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2000-03</date><risdate>2000</risdate><volume>35</volume><issue>6</issue><spage>1518</spage><epage>1529</epage><pages>1518-1529</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>For a sustained infection, enteric bacterial pathogens must evade, resist or tolerate a variety of antimicrobial host defence peptides and proteins. We report here that specific organic acids protect stationary‐phase Escherichia coli and Salmonella cells from killing by a potent antimicrobial peptide derived from the human bactericidal/permeability‐increasing protein (BPI). BPI‐derived peptide P2 rapidly halted oxygen consumption by stationary‐phase cells preincubated with glucose, pyruvate or malate and caused a 109‐fold drop in cell viability within 90 min of addition. In marked contrast, O2 consumption and viability were not significantly affected in stationary‐phase cells preincubated with formate or succinate. Experiments with fdhH, fdoG, fdnG, selC and sdhO mutants indicate that protection by formate and succinate requires their oxidation by the Fdh‐N formate dehydrogenase and succinate dehydrogenase respectively. Protection was also dependent on the BipA GTPase but did not require the RpoS sigma factor. We conclude that the primary lesion caused by this cationic peptide is not gross permeabilization of the bacterial cytoplasmic membrane but may involve specific disruption of the respiratory chain. Because P2 shares sequence similarity with a range of other antimicrobial peptides, its cytotoxic mechanism has broader significance. Additionally, protective quantities of formate are secreted by E. coli and Salmonella during growth suggesting that such compounds are important determinants of bacterial survival in the host.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>10760151</pmid><doi>10.1046/j.1365-2958.2000.01820.x</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0950-382X
ispartof Molecular microbiology, 2000-03, Vol.35 (6), p.1518-1529
issn 0950-382X
1365-2958
language eng
recordid cdi_proquest_miscellaneous_71058465
source MEDLINE; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Free Full-Text Journals in Chemistry
subjects Amino Acid Sequence
Anti-Bacterial Agents - pharmacology
Antimicrobial Cationic Peptides
Bacterial Proteins - biosynthesis
Bacterial Proteins - drug effects
Bacterial Proteins - metabolism
bactericidal/permeability-increasing protein
BipA protein
Blood Proteins - pharmacology
Cell Division - drug effects
DNA, Bacterial - biosynthesis
DNA, Bacterial - drug effects
Escherichia coli
Escherichia coli - drug effects
Escherichia coli - growth & development
Escherichia coli - metabolism
Escherichia coli Proteins
Fermentation
formate dehydrogenase
Formate Dehydrogenases - metabolism
Formates - pharmacology
formic acid
Glucose - pharmacology
GTP Phosphohydrolases - drug effects
GTP Phosphohydrolases - metabolism
Humans
Malates - pharmacology
Membrane Proteins
Molecular Sequence Data
Oxygen - metabolism
Peptide Fragments - pharmacology
Phosphoproteins
Pyruvic Acid - pharmacology
Salmonella
Salmonella - drug effects
Sigma Factor - metabolism
succinic acid
title Formate protects stationary‐phase Escherichia coli and Salmonella cells from killing by a cationic antimicrobial peptide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A36%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formate%20protects%20stationary%E2%80%90phase%20Escherichia%20coli%20and%20Salmonella%20cells%20from%20killing%20by%20a%20cationic%20antimicrobial%20peptide&rft.jtitle=Molecular%20microbiology&rft.au=Barker,%20Helen%20C.&rft.date=2000-03&rft.volume=35&rft.issue=6&rft.spage=1518&rft.epage=1529&rft.pages=1518-1529&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1046/j.1365-2958.2000.01820.x&rft_dat=%3Cproquest_cross%3E71058465%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196520666&rft_id=info:pmid/10760151&rfr_iscdi=true