Rapid Displacement of Vimentin Intermediate Filaments in Living Endothelial Cells Exposed to Flow

ABSTRACTHemodynamic shear stress at the endothelial cell surface induces acute and chronic intracellular responses that regulate vessel wall biology. The cytoskeleton is implicated by acting both as a direct connector to local surface deformation and as a distribution network for mechanical forces t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation research 2000-04, Vol.86 (7), p.745-752
Hauptverfasser: Helmke, Brian P, Goldman, Robert D, Davies, Peter F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 752
container_issue 7
container_start_page 745
container_title Circulation research
container_volume 86
creator Helmke, Brian P
Goldman, Robert D
Davies, Peter F
description ABSTRACTHemodynamic shear stress at the endothelial cell surface induces acute and chronic intracellular responses that regulate vessel wall biology. The cytoskeleton is implicated by acting both as a direct connector to local surface deformation and as a distribution network for mechanical forces throughout the cell; however, direct observation and measurement of its position during flow have only recently become possible. In this study, we directly demonstrate rapid deformation of the intermediate filament (IF) network in living endothelial cells subjected to changes in hemodynamic shear stress. Time-lapse optical sectioning and deconvolution microscopy were performed within the first 3 minutes after the introduction of flow (shear stress, 12 dyn/cm). Spatial and temporal dynamics of green fluorescent protein–vimentin IFs in confluent endothelial cells were analyzed. The imposition of shear stress significantly increased the variability of IF movement throughout the cell in the x-, y-, and z-directions compared with the constitutive dynamics noted in the absence of flow. Acute polymerization and depolymerization of the IF network were absent. The magnitude and direction of flow-induced IF displacement were heterogeneous at the subcellular level. These qualitative and quantitative data demonstrate that shear stress acting at the luminal surface of the endothelium results in rapid deformation of a stable IF network.
doi_str_mv 10.1161/01.res.86.7.745
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71050628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71050628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5838-cdf97a0f1b8eee506472c7954a6747c555659ba6c47dd9ebbb2763d92af713823</originalsourceid><addsrcrecordid>eNpdkd2L1DAUxYMo7rj67JsEEd_azc1n-yizM7owIKwfryFNUydrphmT1tH_3pQZUHzKIfd3D4dzEXoJpAaQcEOgTi7XjaxVrbh4hFYgKK-4UPAYrQghbaUYI1foWc4PhABntH2KroAoyTlRK2TuzdH3-NbnYzDWHdw44Tjgr35RfsR34-TSwfXeTA5vfTDLf8ZlsvM__fgNb8Y-TnsXvAl47ULIePPrGLPr8RTxNsTTc_RkMCG7F5f3Gn3Zbj6vP1S7j-_v1u92lRUNayrbD60yZICucc4JIrmiVrWCG6m4skIIKdrOSMtV37eu6zqqJOtbagYFrKHsGr09-x5T_DG7POmDz7YkMqOLc9YKSHGlTQFf_wc-xDmNJZumQDm0AliBbs6QTTHn5AZ9TP5g0m8NRC_VawL6fvNJN1IrXaovG68utnNXCvuHP3ddgDcXwGRrwpDMaH3-yzGumFzi8TN2iqF0n7-H-eSS3jsTpr0uJyWMAK3oojhwUi2iYX8Ao2Ca3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212419513</pqid></control><display><type>article</type><title>Rapid Displacement of Vimentin Intermediate Filaments in Living Endothelial Cells Exposed to Flow</title><source>MEDLINE</source><source>American Heart Association Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Journals@Ovid Complete</source><creator>Helmke, Brian P ; Goldman, Robert D ; Davies, Peter F</creator><creatorcontrib>Helmke, Brian P ; Goldman, Robert D ; Davies, Peter F</creatorcontrib><description>ABSTRACTHemodynamic shear stress at the endothelial cell surface induces acute and chronic intracellular responses that regulate vessel wall biology. The cytoskeleton is implicated by acting both as a direct connector to local surface deformation and as a distribution network for mechanical forces throughout the cell; however, direct observation and measurement of its position during flow have only recently become possible. In this study, we directly demonstrate rapid deformation of the intermediate filament (IF) network in living endothelial cells subjected to changes in hemodynamic shear stress. Time-lapse optical sectioning and deconvolution microscopy were performed within the first 3 minutes after the introduction of flow (shear stress, 12 dyn/cm). Spatial and temporal dynamics of green fluorescent protein–vimentin IFs in confluent endothelial cells were analyzed. The imposition of shear stress significantly increased the variability of IF movement throughout the cell in the x-, y-, and z-directions compared with the constitutive dynamics noted in the absence of flow. Acute polymerization and depolymerization of the IF network were absent. The magnitude and direction of flow-induced IF displacement were heterogeneous at the subcellular level. These qualitative and quantitative data demonstrate that shear stress acting at the luminal surface of the endothelium results in rapid deformation of a stable IF network.</description><identifier>ISSN: 0009-7330</identifier><identifier>EISSN: 1524-4571</identifier><identifier>DOI: 10.1161/01.res.86.7.745</identifier><identifier>PMID: 10764407</identifier><identifier>CODEN: CIRUAL</identifier><language>eng</language><publisher>Hagerstown, MD: American Heart Association, Inc</publisher><subject>Animals ; Aorta ; Biological and medical sciences ; Blood vessels and receptors ; Cattle ; Cells, Cultured ; Endothelium, Vascular - cytology ; Endothelium, Vascular - physiology ; Endothelium, Vascular - ultrastructure ; Fundamental and applied biological sciences. Psychology ; Green Fluorescent Proteins ; Intermediate Filaments - physiology ; Intermediate Filaments - ultrastructure ; Luminescent Proteins - analysis ; Microscopy, Video ; Recombinant Fusion Proteins - analysis ; Recombinant Fusion Proteins - biosynthesis ; Space life sciences ; Stress, Mechanical ; Transfection ; Vertebrates: cardiovascular system ; Vimentin - physiology</subject><ispartof>Circulation research, 2000-04, Vol.86 (7), p.745-752</ispartof><rights>2000 American Heart Association, Inc.</rights><rights>2000 INIST-CNRS</rights><rights>Copyright American Heart Association, Inc. Apr 14, 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5838-cdf97a0f1b8eee506472c7954a6747c555659ba6c47dd9ebbb2763d92af713823</citedby><cites>FETCH-LOGICAL-c5838-cdf97a0f1b8eee506472c7954a6747c555659ba6c47dd9ebbb2763d92af713823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3674,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1347368$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10764407$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Helmke, Brian P</creatorcontrib><creatorcontrib>Goldman, Robert D</creatorcontrib><creatorcontrib>Davies, Peter F</creatorcontrib><title>Rapid Displacement of Vimentin Intermediate Filaments in Living Endothelial Cells Exposed to Flow</title><title>Circulation research</title><addtitle>Circ Res</addtitle><description>ABSTRACTHemodynamic shear stress at the endothelial cell surface induces acute and chronic intracellular responses that regulate vessel wall biology. The cytoskeleton is implicated by acting both as a direct connector to local surface deformation and as a distribution network for mechanical forces throughout the cell; however, direct observation and measurement of its position during flow have only recently become possible. In this study, we directly demonstrate rapid deformation of the intermediate filament (IF) network in living endothelial cells subjected to changes in hemodynamic shear stress. Time-lapse optical sectioning and deconvolution microscopy were performed within the first 3 minutes after the introduction of flow (shear stress, 12 dyn/cm). Spatial and temporal dynamics of green fluorescent protein–vimentin IFs in confluent endothelial cells were analyzed. The imposition of shear stress significantly increased the variability of IF movement throughout the cell in the x-, y-, and z-directions compared with the constitutive dynamics noted in the absence of flow. Acute polymerization and depolymerization of the IF network were absent. The magnitude and direction of flow-induced IF displacement were heterogeneous at the subcellular level. These qualitative and quantitative data demonstrate that shear stress acting at the luminal surface of the endothelium results in rapid deformation of a stable IF network.</description><subject>Animals</subject><subject>Aorta</subject><subject>Biological and medical sciences</subject><subject>Blood vessels and receptors</subject><subject>Cattle</subject><subject>Cells, Cultured</subject><subject>Endothelium, Vascular - cytology</subject><subject>Endothelium, Vascular - physiology</subject><subject>Endothelium, Vascular - ultrastructure</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Green Fluorescent Proteins</subject><subject>Intermediate Filaments - physiology</subject><subject>Intermediate Filaments - ultrastructure</subject><subject>Luminescent Proteins - analysis</subject><subject>Microscopy, Video</subject><subject>Recombinant Fusion Proteins - analysis</subject><subject>Recombinant Fusion Proteins - biosynthesis</subject><subject>Space life sciences</subject><subject>Stress, Mechanical</subject><subject>Transfection</subject><subject>Vertebrates: cardiovascular system</subject><subject>Vimentin - physiology</subject><issn>0009-7330</issn><issn>1524-4571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkd2L1DAUxYMo7rj67JsEEd_azc1n-yizM7owIKwfryFNUydrphmT1tH_3pQZUHzKIfd3D4dzEXoJpAaQcEOgTi7XjaxVrbh4hFYgKK-4UPAYrQghbaUYI1foWc4PhABntH2KroAoyTlRK2TuzdH3-NbnYzDWHdw44Tjgr35RfsR34-TSwfXeTA5vfTDLf8ZlsvM__fgNb8Y-TnsXvAl47ULIePPrGLPr8RTxNsTTc_RkMCG7F5f3Gn3Zbj6vP1S7j-_v1u92lRUNayrbD60yZICucc4JIrmiVrWCG6m4skIIKdrOSMtV37eu6zqqJOtbagYFrKHsGr09-x5T_DG7POmDz7YkMqOLc9YKSHGlTQFf_wc-xDmNJZumQDm0AliBbs6QTTHn5AZ9TP5g0m8NRC_VawL6fvNJN1IrXaovG68utnNXCvuHP3ddgDcXwGRrwpDMaH3-yzGumFzi8TN2iqF0n7-H-eSS3jsTpr0uJyWMAK3oojhwUi2iYX8Ao2Ca3g</recordid><startdate>20000414</startdate><enddate>20000414</enddate><creator>Helmke, Brian P</creator><creator>Goldman, Robert D</creator><creator>Davies, Peter F</creator><general>American Heart Association, Inc</general><general>Lippincott</general><general>Lippincott Williams &amp; Wilkins Ovid Technologies</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20000414</creationdate><title>Rapid Displacement of Vimentin Intermediate Filaments in Living Endothelial Cells Exposed to Flow</title><author>Helmke, Brian P ; Goldman, Robert D ; Davies, Peter F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5838-cdf97a0f1b8eee506472c7954a6747c555659ba6c47dd9ebbb2763d92af713823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Animals</topic><topic>Aorta</topic><topic>Biological and medical sciences</topic><topic>Blood vessels and receptors</topic><topic>Cattle</topic><topic>Cells, Cultured</topic><topic>Endothelium, Vascular - cytology</topic><topic>Endothelium, Vascular - physiology</topic><topic>Endothelium, Vascular - ultrastructure</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Green Fluorescent Proteins</topic><topic>Intermediate Filaments - physiology</topic><topic>Intermediate Filaments - ultrastructure</topic><topic>Luminescent Proteins - analysis</topic><topic>Microscopy, Video</topic><topic>Recombinant Fusion Proteins - analysis</topic><topic>Recombinant Fusion Proteins - biosynthesis</topic><topic>Space life sciences</topic><topic>Stress, Mechanical</topic><topic>Transfection</topic><topic>Vertebrates: cardiovascular system</topic><topic>Vimentin - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Helmke, Brian P</creatorcontrib><creatorcontrib>Goldman, Robert D</creatorcontrib><creatorcontrib>Davies, Peter F</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Circulation research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Helmke, Brian P</au><au>Goldman, Robert D</au><au>Davies, Peter F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid Displacement of Vimentin Intermediate Filaments in Living Endothelial Cells Exposed to Flow</atitle><jtitle>Circulation research</jtitle><addtitle>Circ Res</addtitle><date>2000-04-14</date><risdate>2000</risdate><volume>86</volume><issue>7</issue><spage>745</spage><epage>752</epage><pages>745-752</pages><issn>0009-7330</issn><eissn>1524-4571</eissn><coden>CIRUAL</coden><abstract>ABSTRACTHemodynamic shear stress at the endothelial cell surface induces acute and chronic intracellular responses that regulate vessel wall biology. The cytoskeleton is implicated by acting both as a direct connector to local surface deformation and as a distribution network for mechanical forces throughout the cell; however, direct observation and measurement of its position during flow have only recently become possible. In this study, we directly demonstrate rapid deformation of the intermediate filament (IF) network in living endothelial cells subjected to changes in hemodynamic shear stress. Time-lapse optical sectioning and deconvolution microscopy were performed within the first 3 minutes after the introduction of flow (shear stress, 12 dyn/cm). Spatial and temporal dynamics of green fluorescent protein–vimentin IFs in confluent endothelial cells were analyzed. The imposition of shear stress significantly increased the variability of IF movement throughout the cell in the x-, y-, and z-directions compared with the constitutive dynamics noted in the absence of flow. Acute polymerization and depolymerization of the IF network were absent. The magnitude and direction of flow-induced IF displacement were heterogeneous at the subcellular level. These qualitative and quantitative data demonstrate that shear stress acting at the luminal surface of the endothelium results in rapid deformation of a stable IF network.</abstract><cop>Hagerstown, MD</cop><pub>American Heart Association, Inc</pub><pmid>10764407</pmid><doi>10.1161/01.res.86.7.745</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-7330
ispartof Circulation research, 2000-04, Vol.86 (7), p.745-752
issn 0009-7330
1524-4571
language eng
recordid cdi_proquest_miscellaneous_71050628
source MEDLINE; American Heart Association Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Journals@Ovid Complete
subjects Animals
Aorta
Biological and medical sciences
Blood vessels and receptors
Cattle
Cells, Cultured
Endothelium, Vascular - cytology
Endothelium, Vascular - physiology
Endothelium, Vascular - ultrastructure
Fundamental and applied biological sciences. Psychology
Green Fluorescent Proteins
Intermediate Filaments - physiology
Intermediate Filaments - ultrastructure
Luminescent Proteins - analysis
Microscopy, Video
Recombinant Fusion Proteins - analysis
Recombinant Fusion Proteins - biosynthesis
Space life sciences
Stress, Mechanical
Transfection
Vertebrates: cardiovascular system
Vimentin - physiology
title Rapid Displacement of Vimentin Intermediate Filaments in Living Endothelial Cells Exposed to Flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A02%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20Displacement%20of%20Vimentin%20Intermediate%20Filaments%20in%20Living%20Endothelial%20Cells%20Exposed%20to%20Flow&rft.jtitle=Circulation%20research&rft.au=Helmke,%20Brian%20P&rft.date=2000-04-14&rft.volume=86&rft.issue=7&rft.spage=745&rft.epage=752&rft.pages=745-752&rft.issn=0009-7330&rft.eissn=1524-4571&rft.coden=CIRUAL&rft_id=info:doi/10.1161/01.res.86.7.745&rft_dat=%3Cproquest_cross%3E71050628%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=212419513&rft_id=info:pmid/10764407&rfr_iscdi=true