Quantitative analysis of cell columns in the cerebral cortex

We present a quantified imaging method that describes the cell column in mammalian cortex. The minicolumn is an ideal template with which to examine cortical organization because it is a basic unit of function, complete in itself, which interacts with adjacent and distance columns to form more compl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuroscience methods 2000-04, Vol.97 (1), p.7-17
Hauptverfasser: Buxhoeveden, Daniel P., Switala, Andrew E., Roy, Emil, Casanova, Manuel F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue 1
container_start_page 7
container_title Journal of neuroscience methods
container_volume 97
creator Buxhoeveden, Daniel P.
Switala, Andrew E.
Roy, Emil
Casanova, Manuel F.
description We present a quantified imaging method that describes the cell column in mammalian cortex. The minicolumn is an ideal template with which to examine cortical organization because it is a basic unit of function, complete in itself, which interacts with adjacent and distance columns to form more complex levels of organization. The subtle details of columnar anatomy should reflect physiological changes that have occurred in evolution as well as those that might be caused by pathologies in the brain. In this semiautomatic method, images of Nissl-stained tissue are digitized or scanned into a computer imaging system. The software detects the presence of cell columns and describes details of their morphology and of the surrounding space. Columns are detected automatically on the basis of cell-poor and cell-rich areas using a Gaussian distribution. A line is fit to the cell centers by least squares analysis. The line becomes the center of the column from which the precise location of every cell can be measured. On this basis several algorithms describe the distribution of cells from the center line and in relation to the available surrounding space. Other algorithms use cluster analyses to determine the spatial orientation of every column.
doi_str_mv 10.1016/S0165-0270(99)00192-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71050177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165027099001922</els_id><sourcerecordid>71050177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-48bbf2302f0c25640525bba66c77676e2861e9982784f683723bd1dc486973553</originalsourceid><addsrcrecordid>eNqFkE1LxDAQQIMo7rr6E5QeRPRQnaRN0oAgsvgFCyIqeAtpOsVIt12TVvTf2-4u6s3DZGB4k5l5hOxTOKVAxdlj__AYmIRjpU4AqGIx2yBjmkkWC5m9bJLxDzIiOyG8AUCqQGyTEQUp-4AxOX_oTN261rTuAyNTm-oruBA1ZWSxqiLbVN28DpGro_YV-5rH3Juh7lv83CVbpakC7q3zhDxfXz1Nb-PZ_c3d9HIW25SLNk6zPC9ZAqwEy7hIgTOe50YIK6WQAlkmKCqVMZmlpcgSyZK8oIVNM6FkwnkyIUerfxe-ee8wtHruwrCfqbHpgu5v4UCl7EG-Aq1vQvBY6oV3c-O_NAU9aNNLbXpwopXSS22a9X0H6wFdPsfiT9fKUw8crgETrKlKb2rrwi-XKs7oMP9ihWFv48Oh18E6rC0WzqNtddG4fzb5Bp1dhzQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71050177</pqid></control><display><type>article</type><title>Quantitative analysis of cell columns in the cerebral cortex</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Buxhoeveden, Daniel P. ; Switala, Andrew E. ; Roy, Emil ; Casanova, Manuel F.</creator><creatorcontrib>Buxhoeveden, Daniel P. ; Switala, Andrew E. ; Roy, Emil ; Casanova, Manuel F.</creatorcontrib><description>We present a quantified imaging method that describes the cell column in mammalian cortex. The minicolumn is an ideal template with which to examine cortical organization because it is a basic unit of function, complete in itself, which interacts with adjacent and distance columns to form more complex levels of organization. The subtle details of columnar anatomy should reflect physiological changes that have occurred in evolution as well as those that might be caused by pathologies in the brain. In this semiautomatic method, images of Nissl-stained tissue are digitized or scanned into a computer imaging system. The software detects the presence of cell columns and describes details of their morphology and of the surrounding space. Columns are detected automatically on the basis of cell-poor and cell-rich areas using a Gaussian distribution. A line is fit to the cell centers by least squares analysis. The line becomes the center of the column from which the precise location of every cell can be measured. On this basis several algorithms describe the distribution of cells from the center line and in relation to the available surrounding space. Other algorithms use cluster analyses to determine the spatial orientation of every column.</description><identifier>ISSN: 0165-0270</identifier><identifier>EISSN: 1872-678X</identifier><identifier>DOI: 10.1016/S0165-0270(99)00192-2</identifier><identifier>PMID: 10771070</identifier><identifier>CODEN: JNMEDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Animals ; Biological and medical sciences ; Brain ; Cell Count ; Cell Size ; Cerebral Cortex - cytology ; Cerebral Cortex - physiology ; Cerebral Cortex - ultrastructure ; Computer imaging ; Cortex ; Cytoarchitecture ; Fundamental and applied biological sciences. Psychology ; General aspects. Models. Methods ; Image Processing, Computer-Assisted - methods ; Microscopy ; Minicolumns ; Neurons - physiology ; Neurons - ultrastructure ; Neuropil - physiology ; Neuropil - ultrastructure ; Rats ; Vertebrates: nervous system and sense organs</subject><ispartof>Journal of neuroscience methods, 2000-04, Vol.97 (1), p.7-17</ispartof><rights>2000 Elsevier Science B.V.</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-48bbf2302f0c25640525bba66c77676e2861e9982784f683723bd1dc486973553</citedby><cites>FETCH-LOGICAL-c456t-48bbf2302f0c25640525bba66c77676e2861e9982784f683723bd1dc486973553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0165-0270(99)00192-2$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1495217$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10771070$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Buxhoeveden, Daniel P.</creatorcontrib><creatorcontrib>Switala, Andrew E.</creatorcontrib><creatorcontrib>Roy, Emil</creatorcontrib><creatorcontrib>Casanova, Manuel F.</creatorcontrib><title>Quantitative analysis of cell columns in the cerebral cortex</title><title>Journal of neuroscience methods</title><addtitle>J Neurosci Methods</addtitle><description>We present a quantified imaging method that describes the cell column in mammalian cortex. The minicolumn is an ideal template with which to examine cortical organization because it is a basic unit of function, complete in itself, which interacts with adjacent and distance columns to form more complex levels of organization. The subtle details of columnar anatomy should reflect physiological changes that have occurred in evolution as well as those that might be caused by pathologies in the brain. In this semiautomatic method, images of Nissl-stained tissue are digitized or scanned into a computer imaging system. The software detects the presence of cell columns and describes details of their morphology and of the surrounding space. Columns are detected automatically on the basis of cell-poor and cell-rich areas using a Gaussian distribution. A line is fit to the cell centers by least squares analysis. The line becomes the center of the column from which the precise location of every cell can be measured. On this basis several algorithms describe the distribution of cells from the center line and in relation to the available surrounding space. Other algorithms use cluster analyses to determine the spatial orientation of every column.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Brain</subject><subject>Cell Count</subject><subject>Cell Size</subject><subject>Cerebral Cortex - cytology</subject><subject>Cerebral Cortex - physiology</subject><subject>Cerebral Cortex - ultrastructure</subject><subject>Computer imaging</subject><subject>Cortex</subject><subject>Cytoarchitecture</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Models. Methods</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Microscopy</subject><subject>Minicolumns</subject><subject>Neurons - physiology</subject><subject>Neurons - ultrastructure</subject><subject>Neuropil - physiology</subject><subject>Neuropil - ultrastructure</subject><subject>Rats</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0165-0270</issn><issn>1872-678X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1LxDAQQIMo7rr6E5QeRPRQnaRN0oAgsvgFCyIqeAtpOsVIt12TVvTf2-4u6s3DZGB4k5l5hOxTOKVAxdlj__AYmIRjpU4AqGIx2yBjmkkWC5m9bJLxDzIiOyG8AUCqQGyTEQUp-4AxOX_oTN261rTuAyNTm-oruBA1ZWSxqiLbVN28DpGro_YV-5rH3Juh7lv83CVbpakC7q3zhDxfXz1Nb-PZ_c3d9HIW25SLNk6zPC9ZAqwEy7hIgTOe50YIK6WQAlkmKCqVMZmlpcgSyZK8oIVNM6FkwnkyIUerfxe-ee8wtHruwrCfqbHpgu5v4UCl7EG-Aq1vQvBY6oV3c-O_NAU9aNNLbXpwopXSS22a9X0H6wFdPsfiT9fKUw8crgETrKlKb2rrwi-XKs7oMP9ihWFv48Oh18E6rC0WzqNtddG4fzb5Bp1dhzQ</recordid><startdate>20000401</startdate><enddate>20000401</enddate><creator>Buxhoeveden, Daniel P.</creator><creator>Switala, Andrew E.</creator><creator>Roy, Emil</creator><creator>Casanova, Manuel F.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20000401</creationdate><title>Quantitative analysis of cell columns in the cerebral cortex</title><author>Buxhoeveden, Daniel P. ; Switala, Andrew E. ; Roy, Emil ; Casanova, Manuel F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-48bbf2302f0c25640525bba66c77676e2861e9982784f683723bd1dc486973553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Brain</topic><topic>Cell Count</topic><topic>Cell Size</topic><topic>Cerebral Cortex - cytology</topic><topic>Cerebral Cortex - physiology</topic><topic>Cerebral Cortex - ultrastructure</topic><topic>Computer imaging</topic><topic>Cortex</topic><topic>Cytoarchitecture</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Models. Methods</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Microscopy</topic><topic>Minicolumns</topic><topic>Neurons - physiology</topic><topic>Neurons - ultrastructure</topic><topic>Neuropil - physiology</topic><topic>Neuropil - ultrastructure</topic><topic>Rats</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buxhoeveden, Daniel P.</creatorcontrib><creatorcontrib>Switala, Andrew E.</creatorcontrib><creatorcontrib>Roy, Emil</creatorcontrib><creatorcontrib>Casanova, Manuel F.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neuroscience methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buxhoeveden, Daniel P.</au><au>Switala, Andrew E.</au><au>Roy, Emil</au><au>Casanova, Manuel F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative analysis of cell columns in the cerebral cortex</atitle><jtitle>Journal of neuroscience methods</jtitle><addtitle>J Neurosci Methods</addtitle><date>2000-04-01</date><risdate>2000</risdate><volume>97</volume><issue>1</issue><spage>7</spage><epage>17</epage><pages>7-17</pages><issn>0165-0270</issn><eissn>1872-678X</eissn><coden>JNMEDT</coden><abstract>We present a quantified imaging method that describes the cell column in mammalian cortex. The minicolumn is an ideal template with which to examine cortical organization because it is a basic unit of function, complete in itself, which interacts with adjacent and distance columns to form more complex levels of organization. The subtle details of columnar anatomy should reflect physiological changes that have occurred in evolution as well as those that might be caused by pathologies in the brain. In this semiautomatic method, images of Nissl-stained tissue are digitized or scanned into a computer imaging system. The software detects the presence of cell columns and describes details of their morphology and of the surrounding space. Columns are detected automatically on the basis of cell-poor and cell-rich areas using a Gaussian distribution. A line is fit to the cell centers by least squares analysis. The line becomes the center of the column from which the precise location of every cell can be measured. On this basis several algorithms describe the distribution of cells from the center line and in relation to the available surrounding space. Other algorithms use cluster analyses to determine the spatial orientation of every column.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>10771070</pmid><doi>10.1016/S0165-0270(99)00192-2</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0165-0270
ispartof Journal of neuroscience methods, 2000-04, Vol.97 (1), p.7-17
issn 0165-0270
1872-678X
language eng
recordid cdi_proquest_miscellaneous_71050177
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Algorithms
Animals
Biological and medical sciences
Brain
Cell Count
Cell Size
Cerebral Cortex - cytology
Cerebral Cortex - physiology
Cerebral Cortex - ultrastructure
Computer imaging
Cortex
Cytoarchitecture
Fundamental and applied biological sciences. Psychology
General aspects. Models. Methods
Image Processing, Computer-Assisted - methods
Microscopy
Minicolumns
Neurons - physiology
Neurons - ultrastructure
Neuropil - physiology
Neuropil - ultrastructure
Rats
Vertebrates: nervous system and sense organs
title Quantitative analysis of cell columns in the cerebral cortex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A10%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20analysis%20of%20cell%20columns%20in%20the%20cerebral%20cortex&rft.jtitle=Journal%20of%20neuroscience%20methods&rft.au=Buxhoeveden,%20Daniel%20P.&rft.date=2000-04-01&rft.volume=97&rft.issue=1&rft.spage=7&rft.epage=17&rft.pages=7-17&rft.issn=0165-0270&rft.eissn=1872-678X&rft.coden=JNMEDT&rft_id=info:doi/10.1016/S0165-0270(99)00192-2&rft_dat=%3Cproquest_cross%3E71050177%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71050177&rft_id=info:pmid/10771070&rft_els_id=S0165027099001922&rfr_iscdi=true