Quantitative analysis of cell columns in the cerebral cortex
We present a quantified imaging method that describes the cell column in mammalian cortex. The minicolumn is an ideal template with which to examine cortical organization because it is a basic unit of function, complete in itself, which interacts with adjacent and distance columns to form more compl...
Gespeichert in:
Veröffentlicht in: | Journal of neuroscience methods 2000-04, Vol.97 (1), p.7-17 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | 1 |
container_start_page | 7 |
container_title | Journal of neuroscience methods |
container_volume | 97 |
creator | Buxhoeveden, Daniel P. Switala, Andrew E. Roy, Emil Casanova, Manuel F. |
description | We present a quantified imaging method that describes the cell column in mammalian cortex. The minicolumn is an ideal template with which to examine cortical organization because it is a basic unit of function, complete in itself, which interacts with adjacent and distance columns to form more complex levels of organization. The subtle details of columnar anatomy should reflect physiological changes that have occurred in evolution as well as those that might be caused by pathologies in the brain. In this semiautomatic method, images of Nissl-stained tissue are digitized or scanned into a computer imaging system. The software detects the presence of cell columns and describes details of their morphology and of the surrounding space. Columns are detected automatically on the basis of cell-poor and cell-rich areas using a Gaussian distribution. A line is fit to the cell centers by least squares analysis. The line becomes the center of the column from which the precise location of every cell can be measured. On this basis several algorithms describe the distribution of cells from the center line and in relation to the available surrounding space. Other algorithms use cluster analyses to determine the spatial orientation of every column. |
doi_str_mv | 10.1016/S0165-0270(99)00192-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71050177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165027099001922</els_id><sourcerecordid>71050177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-48bbf2302f0c25640525bba66c77676e2861e9982784f683723bd1dc486973553</originalsourceid><addsrcrecordid>eNqFkE1LxDAQQIMo7rr6E5QeRPRQnaRN0oAgsvgFCyIqeAtpOsVIt12TVvTf2-4u6s3DZGB4k5l5hOxTOKVAxdlj__AYmIRjpU4AqGIx2yBjmkkWC5m9bJLxDzIiOyG8AUCqQGyTEQUp-4AxOX_oTN261rTuAyNTm-oruBA1ZWSxqiLbVN28DpGro_YV-5rH3Juh7lv83CVbpakC7q3zhDxfXz1Nb-PZ_c3d9HIW25SLNk6zPC9ZAqwEy7hIgTOe50YIK6WQAlkmKCqVMZmlpcgSyZK8oIVNM6FkwnkyIUerfxe-ee8wtHruwrCfqbHpgu5v4UCl7EG-Aq1vQvBY6oV3c-O_NAU9aNNLbXpwopXSS22a9X0H6wFdPsfiT9fKUw8crgETrKlKb2rrwi-XKs7oMP9ihWFv48Oh18E6rC0WzqNtddG4fzb5Bp1dhzQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71050177</pqid></control><display><type>article</type><title>Quantitative analysis of cell columns in the cerebral cortex</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Buxhoeveden, Daniel P. ; Switala, Andrew E. ; Roy, Emil ; Casanova, Manuel F.</creator><creatorcontrib>Buxhoeveden, Daniel P. ; Switala, Andrew E. ; Roy, Emil ; Casanova, Manuel F.</creatorcontrib><description>We present a quantified imaging method that describes the cell column in mammalian cortex. The minicolumn is an ideal template with which to examine cortical organization because it is a basic unit of function, complete in itself, which interacts with adjacent and distance columns to form more complex levels of organization. The subtle details of columnar anatomy should reflect physiological changes that have occurred in evolution as well as those that might be caused by pathologies in the brain. In this semiautomatic method, images of Nissl-stained tissue are digitized or scanned into a computer imaging system. The software detects the presence of cell columns and describes details of their morphology and of the surrounding space. Columns are detected automatically on the basis of cell-poor and cell-rich areas using a Gaussian distribution. A line is fit to the cell centers by least squares analysis. The line becomes the center of the column from which the precise location of every cell can be measured. On this basis several algorithms describe the distribution of cells from the center line and in relation to the available surrounding space. Other algorithms use cluster analyses to determine the spatial orientation of every column.</description><identifier>ISSN: 0165-0270</identifier><identifier>EISSN: 1872-678X</identifier><identifier>DOI: 10.1016/S0165-0270(99)00192-2</identifier><identifier>PMID: 10771070</identifier><identifier>CODEN: JNMEDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Animals ; Biological and medical sciences ; Brain ; Cell Count ; Cell Size ; Cerebral Cortex - cytology ; Cerebral Cortex - physiology ; Cerebral Cortex - ultrastructure ; Computer imaging ; Cortex ; Cytoarchitecture ; Fundamental and applied biological sciences. Psychology ; General aspects. Models. Methods ; Image Processing, Computer-Assisted - methods ; Microscopy ; Minicolumns ; Neurons - physiology ; Neurons - ultrastructure ; Neuropil - physiology ; Neuropil - ultrastructure ; Rats ; Vertebrates: nervous system and sense organs</subject><ispartof>Journal of neuroscience methods, 2000-04, Vol.97 (1), p.7-17</ispartof><rights>2000 Elsevier Science B.V.</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-48bbf2302f0c25640525bba66c77676e2861e9982784f683723bd1dc486973553</citedby><cites>FETCH-LOGICAL-c456t-48bbf2302f0c25640525bba66c77676e2861e9982784f683723bd1dc486973553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0165-0270(99)00192-2$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1495217$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10771070$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Buxhoeveden, Daniel P.</creatorcontrib><creatorcontrib>Switala, Andrew E.</creatorcontrib><creatorcontrib>Roy, Emil</creatorcontrib><creatorcontrib>Casanova, Manuel F.</creatorcontrib><title>Quantitative analysis of cell columns in the cerebral cortex</title><title>Journal of neuroscience methods</title><addtitle>J Neurosci Methods</addtitle><description>We present a quantified imaging method that describes the cell column in mammalian cortex. The minicolumn is an ideal template with which to examine cortical organization because it is a basic unit of function, complete in itself, which interacts with adjacent and distance columns to form more complex levels of organization. The subtle details of columnar anatomy should reflect physiological changes that have occurred in evolution as well as those that might be caused by pathologies in the brain. In this semiautomatic method, images of Nissl-stained tissue are digitized or scanned into a computer imaging system. The software detects the presence of cell columns and describes details of their morphology and of the surrounding space. Columns are detected automatically on the basis of cell-poor and cell-rich areas using a Gaussian distribution. A line is fit to the cell centers by least squares analysis. The line becomes the center of the column from which the precise location of every cell can be measured. On this basis several algorithms describe the distribution of cells from the center line and in relation to the available surrounding space. Other algorithms use cluster analyses to determine the spatial orientation of every column.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Brain</subject><subject>Cell Count</subject><subject>Cell Size</subject><subject>Cerebral Cortex - cytology</subject><subject>Cerebral Cortex - physiology</subject><subject>Cerebral Cortex - ultrastructure</subject><subject>Computer imaging</subject><subject>Cortex</subject><subject>Cytoarchitecture</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Models. Methods</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Microscopy</subject><subject>Minicolumns</subject><subject>Neurons - physiology</subject><subject>Neurons - ultrastructure</subject><subject>Neuropil - physiology</subject><subject>Neuropil - ultrastructure</subject><subject>Rats</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0165-0270</issn><issn>1872-678X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1LxDAQQIMo7rr6E5QeRPRQnaRN0oAgsvgFCyIqeAtpOsVIt12TVvTf2-4u6s3DZGB4k5l5hOxTOKVAxdlj__AYmIRjpU4AqGIx2yBjmkkWC5m9bJLxDzIiOyG8AUCqQGyTEQUp-4AxOX_oTN261rTuAyNTm-oruBA1ZWSxqiLbVN28DpGro_YV-5rH3Juh7lv83CVbpakC7q3zhDxfXz1Nb-PZ_c3d9HIW25SLNk6zPC9ZAqwEy7hIgTOe50YIK6WQAlkmKCqVMZmlpcgSyZK8oIVNM6FkwnkyIUerfxe-ee8wtHruwrCfqbHpgu5v4UCl7EG-Aq1vQvBY6oV3c-O_NAU9aNNLbXpwopXSS22a9X0H6wFdPsfiT9fKUw8crgETrKlKb2rrwi-XKs7oMP9ihWFv48Oh18E6rC0WzqNtddG4fzb5Bp1dhzQ</recordid><startdate>20000401</startdate><enddate>20000401</enddate><creator>Buxhoeveden, Daniel P.</creator><creator>Switala, Andrew E.</creator><creator>Roy, Emil</creator><creator>Casanova, Manuel F.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20000401</creationdate><title>Quantitative analysis of cell columns in the cerebral cortex</title><author>Buxhoeveden, Daniel P. ; Switala, Andrew E. ; Roy, Emil ; Casanova, Manuel F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-48bbf2302f0c25640525bba66c77676e2861e9982784f683723bd1dc486973553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Brain</topic><topic>Cell Count</topic><topic>Cell Size</topic><topic>Cerebral Cortex - cytology</topic><topic>Cerebral Cortex - physiology</topic><topic>Cerebral Cortex - ultrastructure</topic><topic>Computer imaging</topic><topic>Cortex</topic><topic>Cytoarchitecture</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Models. Methods</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Microscopy</topic><topic>Minicolumns</topic><topic>Neurons - physiology</topic><topic>Neurons - ultrastructure</topic><topic>Neuropil - physiology</topic><topic>Neuropil - ultrastructure</topic><topic>Rats</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buxhoeveden, Daniel P.</creatorcontrib><creatorcontrib>Switala, Andrew E.</creatorcontrib><creatorcontrib>Roy, Emil</creatorcontrib><creatorcontrib>Casanova, Manuel F.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neuroscience methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buxhoeveden, Daniel P.</au><au>Switala, Andrew E.</au><au>Roy, Emil</au><au>Casanova, Manuel F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative analysis of cell columns in the cerebral cortex</atitle><jtitle>Journal of neuroscience methods</jtitle><addtitle>J Neurosci Methods</addtitle><date>2000-04-01</date><risdate>2000</risdate><volume>97</volume><issue>1</issue><spage>7</spage><epage>17</epage><pages>7-17</pages><issn>0165-0270</issn><eissn>1872-678X</eissn><coden>JNMEDT</coden><abstract>We present a quantified imaging method that describes the cell column in mammalian cortex. The minicolumn is an ideal template with which to examine cortical organization because it is a basic unit of function, complete in itself, which interacts with adjacent and distance columns to form more complex levels of organization. The subtle details of columnar anatomy should reflect physiological changes that have occurred in evolution as well as those that might be caused by pathologies in the brain. In this semiautomatic method, images of Nissl-stained tissue are digitized or scanned into a computer imaging system. The software detects the presence of cell columns and describes details of their morphology and of the surrounding space. Columns are detected automatically on the basis of cell-poor and cell-rich areas using a Gaussian distribution. A line is fit to the cell centers by least squares analysis. The line becomes the center of the column from which the precise location of every cell can be measured. On this basis several algorithms describe the distribution of cells from the center line and in relation to the available surrounding space. Other algorithms use cluster analyses to determine the spatial orientation of every column.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>10771070</pmid><doi>10.1016/S0165-0270(99)00192-2</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-0270 |
ispartof | Journal of neuroscience methods, 2000-04, Vol.97 (1), p.7-17 |
issn | 0165-0270 1872-678X |
language | eng |
recordid | cdi_proquest_miscellaneous_71050177 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Algorithms Animals Biological and medical sciences Brain Cell Count Cell Size Cerebral Cortex - cytology Cerebral Cortex - physiology Cerebral Cortex - ultrastructure Computer imaging Cortex Cytoarchitecture Fundamental and applied biological sciences. Psychology General aspects. Models. Methods Image Processing, Computer-Assisted - methods Microscopy Minicolumns Neurons - physiology Neurons - ultrastructure Neuropil - physiology Neuropil - ultrastructure Rats Vertebrates: nervous system and sense organs |
title | Quantitative analysis of cell columns in the cerebral cortex |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A10%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20analysis%20of%20cell%20columns%20in%20the%20cerebral%20cortex&rft.jtitle=Journal%20of%20neuroscience%20methods&rft.au=Buxhoeveden,%20Daniel%20P.&rft.date=2000-04-01&rft.volume=97&rft.issue=1&rft.spage=7&rft.epage=17&rft.pages=7-17&rft.issn=0165-0270&rft.eissn=1872-678X&rft.coden=JNMEDT&rft_id=info:doi/10.1016/S0165-0270(99)00192-2&rft_dat=%3Cproquest_cross%3E71050177%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71050177&rft_id=info:pmid/10771070&rft_els_id=S0165027099001922&rfr_iscdi=true |