Feature selection for DNA methylation based cancer classification
Molecular portraits, such as mRNA expression or DNA methylation patterns, have been shown to be strongly correlated with phenotypical parameters. These molecular patterns can be revealed routinely on a genomic scale. However, class prediction based on these patterns is an under-determined problem, d...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2001-06, Vol.17 (suppl-1), p.S157-S164 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | S164 |
---|---|
container_issue | suppl-1 |
container_start_page | S157 |
container_title | Bioinformatics |
container_volume | 17 |
creator | Model, Fabian Adorján, Péter Olek, Alexander Piepenbrock, Christian |
description | Molecular portraits, such as mRNA expression or DNA methylation patterns, have been shown to be strongly correlated with phenotypical parameters. These molecular patterns can be revealed routinely on a genomic scale. However, class prediction based on these patterns is an under-determined problem, due to the extreme high dimensionality of the data compared to the usually small number of available samples. This makes a reduction of the data dimensionality necessary. Here we demonstrate how phenotypic classes can be predicted by combining feature selection and discriminant analysis. By comparing several feature selection methods we show that the right dimension reduction strategy is of crucial importance for the classification performance. The techniques are demonstrated by methylation pattern based discrimination between acute lymphoblastic leukemia and acute myeloid leukemia. Contact: Fabian.Model@epigenomics.com |
doi_str_mv | 10.1093/bioinformatics/17.suppl_1.S157 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71042718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>431263361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4207-1fd3936179eb45ddb0480d5aa15dd1cf058cdef839f8fb545e5548066c7564023</originalsourceid><addsrcrecordid>eNpdkE1P3DAQhq2qqFDoX6iiHrhl1xN_JZdKK2DZrhZ6KEioF8txxqppPhY7kcq_r2FXIDjZ43n8zugh5BToDGjF5rUffO-G0JnR2zgHNYvTdttqmP0CoT6QI-CS5gUV1cd0Z1LlvKTskHyO8Z5SAZzzT-QQgCuWyiOyWKIZp4BZxBbt6Ic-S-nZ-fUi63D889ia57faRGwya3qLIbOtidE7b597J-TAmTbil_15TG6XFzdnq3zz8_LH2WKTW15QlYNrWMUkqAprLpqmpmmxRhgDqQDrqChtg65klStdLbhAIRIhpVVCclqwY3K6y92G4WHCOOrOR4tta3ocpqgVUF4oKBP47R14P0yhT7tpqErJKllAgr7vIBuGGAM6vQ2-M-FRA9VPpvVb0xqU3pvWT6ZTwNf9lKnusHn9vlebgHwH-Djiv5e-CX-1VEwJvbr7ra_Uer28LqW-ZP8BaeKQMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198639621</pqid></control><display><type>article</type><title>Feature selection for DNA methylation based cancer classification</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><source>Alma/SFX Local Collection</source><creator>Model, Fabian ; Adorján, Péter ; Olek, Alexander ; Piepenbrock, Christian</creator><creatorcontrib>Model, Fabian ; Adorján, Péter ; Olek, Alexander ; Piepenbrock, Christian</creatorcontrib><description>Molecular portraits, such as mRNA expression or DNA methylation patterns, have been shown to be strongly correlated with phenotypical parameters. These molecular patterns can be revealed routinely on a genomic scale. However, class prediction based on these patterns is an under-determined problem, due to the extreme high dimensionality of the data compared to the usually small number of available samples. This makes a reduction of the data dimensionality necessary. Here we demonstrate how phenotypic classes can be predicted by combining feature selection and discriminant analysis. By comparing several feature selection methods we show that the right dimension reduction strategy is of crucial importance for the classification performance. The techniques are demonstrated by methylation pattern based discrimination between acute lymphoblastic leukemia and acute myeloid leukemia. Contact: Fabian.Model@epigenomics.com</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/17.suppl_1.S157</identifier><identifier>PMID: 11473005</identifier><identifier>CODEN: BOINFP</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Computational Biology ; CpG Islands ; DNA Methylation ; DNA, Neoplasm - chemistry ; Humans ; Leukemia, Myeloid, Acute - metabolism ; Neoplasms - chemistry ; Neoplasms - classification ; Oligonucleotide Array Sequence Analysis - statistics & numerical data ; Precursor Cell Lymphoblastic Leukemia-Lymphoma - metabolism ; Principal Component Analysis</subject><ispartof>Bioinformatics, 2001-06, Vol.17 (suppl-1), p.S157-S164</ispartof><rights>Copyright Oxford University Press(England) Jun 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4207-1fd3936179eb45ddb0480d5aa15dd1cf058cdef839f8fb545e5548066c7564023</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11473005$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Model, Fabian</creatorcontrib><creatorcontrib>Adorján, Péter</creatorcontrib><creatorcontrib>Olek, Alexander</creatorcontrib><creatorcontrib>Piepenbrock, Christian</creatorcontrib><title>Feature selection for DNA methylation based cancer classification</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Molecular portraits, such as mRNA expression or DNA methylation patterns, have been shown to be strongly correlated with phenotypical parameters. These molecular patterns can be revealed routinely on a genomic scale. However, class prediction based on these patterns is an under-determined problem, due to the extreme high dimensionality of the data compared to the usually small number of available samples. This makes a reduction of the data dimensionality necessary. Here we demonstrate how phenotypic classes can be predicted by combining feature selection and discriminant analysis. By comparing several feature selection methods we show that the right dimension reduction strategy is of crucial importance for the classification performance. The techniques are demonstrated by methylation pattern based discrimination between acute lymphoblastic leukemia and acute myeloid leukemia. Contact: Fabian.Model@epigenomics.com</description><subject>Computational Biology</subject><subject>CpG Islands</subject><subject>DNA Methylation</subject><subject>DNA, Neoplasm - chemistry</subject><subject>Humans</subject><subject>Leukemia, Myeloid, Acute - metabolism</subject><subject>Neoplasms - chemistry</subject><subject>Neoplasms - classification</subject><subject>Oligonucleotide Array Sequence Analysis - statistics & numerical data</subject><subject>Precursor Cell Lymphoblastic Leukemia-Lymphoma - metabolism</subject><subject>Principal Component Analysis</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkE1P3DAQhq2qqFDoX6iiHrhl1xN_JZdKK2DZrhZ6KEioF8txxqppPhY7kcq_r2FXIDjZ43n8zugh5BToDGjF5rUffO-G0JnR2zgHNYvTdttqmP0CoT6QI-CS5gUV1cd0Z1LlvKTskHyO8Z5SAZzzT-QQgCuWyiOyWKIZp4BZxBbt6Ic-S-nZ-fUi63D889ia57faRGwya3qLIbOtidE7b597J-TAmTbil_15TG6XFzdnq3zz8_LH2WKTW15QlYNrWMUkqAprLpqmpmmxRhgDqQDrqChtg65klStdLbhAIRIhpVVCclqwY3K6y92G4WHCOOrOR4tta3ocpqgVUF4oKBP47R14P0yhT7tpqErJKllAgr7vIBuGGAM6vQ2-M-FRA9VPpvVb0xqU3pvWT6ZTwNf9lKnusHn9vlebgHwH-Djiv5e-CX-1VEwJvbr7ra_Uer28LqW-ZP8BaeKQMQ</recordid><startdate>20010601</startdate><enddate>20010601</enddate><creator>Model, Fabian</creator><creator>Adorján, Péter</creator><creator>Olek, Alexander</creator><creator>Piepenbrock, Christian</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20010601</creationdate><title>Feature selection for DNA methylation based cancer classification</title><author>Model, Fabian ; Adorján, Péter ; Olek, Alexander ; Piepenbrock, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4207-1fd3936179eb45ddb0480d5aa15dd1cf058cdef839f8fb545e5548066c7564023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Computational Biology</topic><topic>CpG Islands</topic><topic>DNA Methylation</topic><topic>DNA, Neoplasm - chemistry</topic><topic>Humans</topic><topic>Leukemia, Myeloid, Acute - metabolism</topic><topic>Neoplasms - chemistry</topic><topic>Neoplasms - classification</topic><topic>Oligonucleotide Array Sequence Analysis - statistics & numerical data</topic><topic>Precursor Cell Lymphoblastic Leukemia-Lymphoma - metabolism</topic><topic>Principal Component Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Model, Fabian</creatorcontrib><creatorcontrib>Adorján, Péter</creatorcontrib><creatorcontrib>Olek, Alexander</creatorcontrib><creatorcontrib>Piepenbrock, Christian</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Model, Fabian</au><au>Adorján, Péter</au><au>Olek, Alexander</au><au>Piepenbrock, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature selection for DNA methylation based cancer classification</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2001-06-01</date><risdate>2001</risdate><volume>17</volume><issue>suppl-1</issue><spage>S157</spage><epage>S164</epage><pages>S157-S164</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><coden>BOINFP</coden><abstract>Molecular portraits, such as mRNA expression or DNA methylation patterns, have been shown to be strongly correlated with phenotypical parameters. These molecular patterns can be revealed routinely on a genomic scale. However, class prediction based on these patterns is an under-determined problem, due to the extreme high dimensionality of the data compared to the usually small number of available samples. This makes a reduction of the data dimensionality necessary. Here we demonstrate how phenotypic classes can be predicted by combining feature selection and discriminant analysis. By comparing several feature selection methods we show that the right dimension reduction strategy is of crucial importance for the classification performance. The techniques are demonstrated by methylation pattern based discrimination between acute lymphoblastic leukemia and acute myeloid leukemia. Contact: Fabian.Model@epigenomics.com</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>11473005</pmid><doi>10.1093/bioinformatics/17.suppl_1.S157</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2001-06, Vol.17 (suppl-1), p.S157-S164 |
issn | 1367-4803 1460-2059 1367-4811 |
language | eng |
recordid | cdi_proquest_miscellaneous_71042718 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection; Alma/SFX Local Collection |
subjects | Computational Biology CpG Islands DNA Methylation DNA, Neoplasm - chemistry Humans Leukemia, Myeloid, Acute - metabolism Neoplasms - chemistry Neoplasms - classification Oligonucleotide Array Sequence Analysis - statistics & numerical data Precursor Cell Lymphoblastic Leukemia-Lymphoma - metabolism Principal Component Analysis |
title | Feature selection for DNA methylation based cancer classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A20%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20selection%20for%20DNA%20methylation%20based%20cancer%20classification&rft.jtitle=Bioinformatics&rft.au=Model,%20Fabian&rft.date=2001-06-01&rft.volume=17&rft.issue=suppl-1&rft.spage=S157&rft.epage=S164&rft.pages=S157-S164&rft.issn=1367-4803&rft.eissn=1460-2059&rft.coden=BOINFP&rft_id=info:doi/10.1093/bioinformatics/17.suppl_1.S157&rft_dat=%3Cproquest_cross%3E431263361%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198639621&rft_id=info:pmid/11473005&rfr_iscdi=true |