Feature selection for DNA methylation based cancer classification

Molecular portraits, such as mRNA expression or DNA methylation patterns, have been shown to be strongly correlated with phenotypical parameters. These molecular patterns can be revealed routinely on a genomic scale. However, class prediction based on these patterns is an under-determined problem, d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2001-06, Vol.17 (suppl-1), p.S157-S164
Hauptverfasser: Model, Fabian, Adorján, Péter, Olek, Alexander, Piepenbrock, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page S164
container_issue suppl-1
container_start_page S157
container_title Bioinformatics
container_volume 17
creator Model, Fabian
Adorján, Péter
Olek, Alexander
Piepenbrock, Christian
description Molecular portraits, such as mRNA expression or DNA methylation patterns, have been shown to be strongly correlated with phenotypical parameters. These molecular patterns can be revealed routinely on a genomic scale. However, class prediction based on these patterns is an under-determined problem, due to the extreme high dimensionality of the data compared to the usually small number of available samples. This makes a reduction of the data dimensionality necessary. Here we demonstrate how phenotypic classes can be predicted by combining feature selection and discriminant analysis. By comparing several feature selection methods we show that the right dimension reduction strategy is of crucial importance for the classification performance. The techniques are demonstrated by methylation pattern based discrimination between acute lymphoblastic leukemia and acute myeloid leukemia. Contact: Fabian.Model@epigenomics.com
doi_str_mv 10.1093/bioinformatics/17.suppl_1.S157
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71042718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>431263361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4207-1fd3936179eb45ddb0480d5aa15dd1cf058cdef839f8fb545e5548066c7564023</originalsourceid><addsrcrecordid>eNpdkE1P3DAQhq2qqFDoX6iiHrhl1xN_JZdKK2DZrhZ6KEioF8txxqppPhY7kcq_r2FXIDjZ43n8zugh5BToDGjF5rUffO-G0JnR2zgHNYvTdttqmP0CoT6QI-CS5gUV1cd0Z1LlvKTskHyO8Z5SAZzzT-QQgCuWyiOyWKIZp4BZxBbt6Ic-S-nZ-fUi63D889ia57faRGwya3qLIbOtidE7b597J-TAmTbil_15TG6XFzdnq3zz8_LH2WKTW15QlYNrWMUkqAprLpqmpmmxRhgDqQDrqChtg65klStdLbhAIRIhpVVCclqwY3K6y92G4WHCOOrOR4tta3ocpqgVUF4oKBP47R14P0yhT7tpqErJKllAgr7vIBuGGAM6vQ2-M-FRA9VPpvVb0xqU3pvWT6ZTwNf9lKnusHn9vlebgHwH-Djiv5e-CX-1VEwJvbr7ra_Uer28LqW-ZP8BaeKQMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198639621</pqid></control><display><type>article</type><title>Feature selection for DNA methylation based cancer classification</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><source>Alma/SFX Local Collection</source><creator>Model, Fabian ; Adorján, Péter ; Olek, Alexander ; Piepenbrock, Christian</creator><creatorcontrib>Model, Fabian ; Adorján, Péter ; Olek, Alexander ; Piepenbrock, Christian</creatorcontrib><description>Molecular portraits, such as mRNA expression or DNA methylation patterns, have been shown to be strongly correlated with phenotypical parameters. These molecular patterns can be revealed routinely on a genomic scale. However, class prediction based on these patterns is an under-determined problem, due to the extreme high dimensionality of the data compared to the usually small number of available samples. This makes a reduction of the data dimensionality necessary. Here we demonstrate how phenotypic classes can be predicted by combining feature selection and discriminant analysis. By comparing several feature selection methods we show that the right dimension reduction strategy is of crucial importance for the classification performance. The techniques are demonstrated by methylation pattern based discrimination between acute lymphoblastic leukemia and acute myeloid leukemia. Contact: Fabian.Model@epigenomics.com</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/17.suppl_1.S157</identifier><identifier>PMID: 11473005</identifier><identifier>CODEN: BOINFP</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Computational Biology ; CpG Islands ; DNA Methylation ; DNA, Neoplasm - chemistry ; Humans ; Leukemia, Myeloid, Acute - metabolism ; Neoplasms - chemistry ; Neoplasms - classification ; Oligonucleotide Array Sequence Analysis - statistics &amp; numerical data ; Precursor Cell Lymphoblastic Leukemia-Lymphoma - metabolism ; Principal Component Analysis</subject><ispartof>Bioinformatics, 2001-06, Vol.17 (suppl-1), p.S157-S164</ispartof><rights>Copyright Oxford University Press(England) Jun 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4207-1fd3936179eb45ddb0480d5aa15dd1cf058cdef839f8fb545e5548066c7564023</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11473005$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Model, Fabian</creatorcontrib><creatorcontrib>Adorján, Péter</creatorcontrib><creatorcontrib>Olek, Alexander</creatorcontrib><creatorcontrib>Piepenbrock, Christian</creatorcontrib><title>Feature selection for DNA methylation based cancer classification</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Molecular portraits, such as mRNA expression or DNA methylation patterns, have been shown to be strongly correlated with phenotypical parameters. These molecular patterns can be revealed routinely on a genomic scale. However, class prediction based on these patterns is an under-determined problem, due to the extreme high dimensionality of the data compared to the usually small number of available samples. This makes a reduction of the data dimensionality necessary. Here we demonstrate how phenotypic classes can be predicted by combining feature selection and discriminant analysis. By comparing several feature selection methods we show that the right dimension reduction strategy is of crucial importance for the classification performance. The techniques are demonstrated by methylation pattern based discrimination between acute lymphoblastic leukemia and acute myeloid leukemia. Contact: Fabian.Model@epigenomics.com</description><subject>Computational Biology</subject><subject>CpG Islands</subject><subject>DNA Methylation</subject><subject>DNA, Neoplasm - chemistry</subject><subject>Humans</subject><subject>Leukemia, Myeloid, Acute - metabolism</subject><subject>Neoplasms - chemistry</subject><subject>Neoplasms - classification</subject><subject>Oligonucleotide Array Sequence Analysis - statistics &amp; numerical data</subject><subject>Precursor Cell Lymphoblastic Leukemia-Lymphoma - metabolism</subject><subject>Principal Component Analysis</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkE1P3DAQhq2qqFDoX6iiHrhl1xN_JZdKK2DZrhZ6KEioF8txxqppPhY7kcq_r2FXIDjZ43n8zugh5BToDGjF5rUffO-G0JnR2zgHNYvTdttqmP0CoT6QI-CS5gUV1cd0Z1LlvKTskHyO8Z5SAZzzT-QQgCuWyiOyWKIZp4BZxBbt6Ic-S-nZ-fUi63D889ia57faRGwya3qLIbOtidE7b597J-TAmTbil_15TG6XFzdnq3zz8_LH2WKTW15QlYNrWMUkqAprLpqmpmmxRhgDqQDrqChtg65klStdLbhAIRIhpVVCclqwY3K6y92G4WHCOOrOR4tta3ocpqgVUF4oKBP47R14P0yhT7tpqErJKllAgr7vIBuGGAM6vQ2-M-FRA9VPpvVb0xqU3pvWT6ZTwNf9lKnusHn9vlebgHwH-Djiv5e-CX-1VEwJvbr7ra_Uer28LqW-ZP8BaeKQMQ</recordid><startdate>20010601</startdate><enddate>20010601</enddate><creator>Model, Fabian</creator><creator>Adorján, Péter</creator><creator>Olek, Alexander</creator><creator>Piepenbrock, Christian</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20010601</creationdate><title>Feature selection for DNA methylation based cancer classification</title><author>Model, Fabian ; Adorján, Péter ; Olek, Alexander ; Piepenbrock, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4207-1fd3936179eb45ddb0480d5aa15dd1cf058cdef839f8fb545e5548066c7564023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Computational Biology</topic><topic>CpG Islands</topic><topic>DNA Methylation</topic><topic>DNA, Neoplasm - chemistry</topic><topic>Humans</topic><topic>Leukemia, Myeloid, Acute - metabolism</topic><topic>Neoplasms - chemistry</topic><topic>Neoplasms - classification</topic><topic>Oligonucleotide Array Sequence Analysis - statistics &amp; numerical data</topic><topic>Precursor Cell Lymphoblastic Leukemia-Lymphoma - metabolism</topic><topic>Principal Component Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Model, Fabian</creatorcontrib><creatorcontrib>Adorján, Péter</creatorcontrib><creatorcontrib>Olek, Alexander</creatorcontrib><creatorcontrib>Piepenbrock, Christian</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Model, Fabian</au><au>Adorján, Péter</au><au>Olek, Alexander</au><au>Piepenbrock, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature selection for DNA methylation based cancer classification</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2001-06-01</date><risdate>2001</risdate><volume>17</volume><issue>suppl-1</issue><spage>S157</spage><epage>S164</epage><pages>S157-S164</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><coden>BOINFP</coden><abstract>Molecular portraits, such as mRNA expression or DNA methylation patterns, have been shown to be strongly correlated with phenotypical parameters. These molecular patterns can be revealed routinely on a genomic scale. However, class prediction based on these patterns is an under-determined problem, due to the extreme high dimensionality of the data compared to the usually small number of available samples. This makes a reduction of the data dimensionality necessary. Here we demonstrate how phenotypic classes can be predicted by combining feature selection and discriminant analysis. By comparing several feature selection methods we show that the right dimension reduction strategy is of crucial importance for the classification performance. The techniques are demonstrated by methylation pattern based discrimination between acute lymphoblastic leukemia and acute myeloid leukemia. Contact: Fabian.Model@epigenomics.com</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>11473005</pmid><doi>10.1093/bioinformatics/17.suppl_1.S157</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2001-06, Vol.17 (suppl-1), p.S157-S164
issn 1367-4803
1460-2059
1367-4811
language eng
recordid cdi_proquest_miscellaneous_71042718
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection; Alma/SFX Local Collection
subjects Computational Biology
CpG Islands
DNA Methylation
DNA, Neoplasm - chemistry
Humans
Leukemia, Myeloid, Acute - metabolism
Neoplasms - chemistry
Neoplasms - classification
Oligonucleotide Array Sequence Analysis - statistics & numerical data
Precursor Cell Lymphoblastic Leukemia-Lymphoma - metabolism
Principal Component Analysis
title Feature selection for DNA methylation based cancer classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A20%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20selection%20for%20DNA%20methylation%20based%20cancer%20classification&rft.jtitle=Bioinformatics&rft.au=Model,%20Fabian&rft.date=2001-06-01&rft.volume=17&rft.issue=suppl-1&rft.spage=S157&rft.epage=S164&rft.pages=S157-S164&rft.issn=1367-4803&rft.eissn=1460-2059&rft.coden=BOINFP&rft_id=info:doi/10.1093/bioinformatics/17.suppl_1.S157&rft_dat=%3Cproquest_cross%3E431263361%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198639621&rft_id=info:pmid/11473005&rfr_iscdi=true