The type III protein translocation system of enteropathogenic Escherichia coli involves EspA–EspB protein interactions

Enteropathogenic Escherichia coli (EPEC), like many bacterial pathogens, use a type III secretion system to deliver effector proteins across the bacterial cell wall. In EPEC, four proteins, EspA, EspB, EspD and Tir are known to be exported by a type III secretion system and to be essential for ‘atta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular microbiology 2000-03, Vol.35 (6), p.1483-1492
Hauptverfasser: Hartland, Elizabeth L., Daniell, Sarah J., Delahay, Robin M., Neves, Bianca C., Wallis, Tim, Shaw, Robert K, Hale, Christine, Knutton, Stuart, Frankel, Gad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1492
container_issue 6
container_start_page 1483
container_title Molecular microbiology
container_volume 35
creator Hartland, Elizabeth L.
Daniell, Sarah J.
Delahay, Robin M.
Neves, Bianca C.
Wallis, Tim
Shaw, Robert K
Hale, Christine
Knutton, Stuart
Frankel, Gad
description Enteropathogenic Escherichia coli (EPEC), like many bacterial pathogens, use a type III secretion system to deliver effector proteins across the bacterial cell wall. In EPEC, four proteins, EspA, EspB, EspD and Tir are known to be exported by a type III secretion system and to be essential for ‘attaching and effacing’ (A/E) lesion formation, the hallmark of EPEC pathogenicity. EspA was recently shown to be a structural protein and a major component of a large, transiently expressed, filamentous surface organelle which forms a direct link between the bacterium and the host cell. In contrast, EspB is translocated into the host cell where it is localized to both membrane and cytosolic cell fractions. EspA and EspB are required for translocation of Tir to the host cell membrane suggesting that they may both be components of the translocation apparatus. In this study, we show that EspB co‐immunoprecipitates with the EspA filaments and that, during EPEC infection of HEp‐2 cells, EspB localizes closely with EspA. Using a number of binding assays, we also show that EspB can bind and be copurified with EspA. Nevertheless, binding of EspA filaments to the host cell membranes occurred even in the absence of EspB. These results suggest that following initial attachment of the EspA filaments to the target cells, EspB is delivered into the host cell membrane and that the interaction between EspA and EspB may be important for protein translocation.
doi_str_mv 10.1046/j.1365-2958.2000.01814.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71027927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71027927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4894-44b0516f598459b85bb01e79316b840300c53e25698a9cb8bda6d78fd6da5b163</originalsourceid><addsrcrecordid>eNqNkc1u1DAURi0EokPhFZDFgl3CdfwTe8GiVIVGasWmSOws23EYjzJxiDPtzI534A15kjpMVSE2sLqW7vk-XesghAmUBJh4tykJFbyoFJdlBQAlEElYuX-CVo-Lp2gFikNBZfX1BL1IaQNAKAj6HJ0QqAUQJldof7P2eD6MHjdNg8cpzj4MeJ7MkProzBzigNMhzX6LY4f9MPspjmZex29-CA5fJLf2U3DrYLCLfcBhuI39rU95M579-vEzjw-PtWGJG7eUppfoWWf65F89zFP05ePFzfllcfX5U3N-dlU4JhUrGLPAiei4kowrK7m1QHytKBFWMqAAjlNfcaGkUc5K2xrR1rJrRWu4JYKeorfH3nzE951Ps96G5Hzfm8HHXdI1gapWVf1PkNScK0ZpBt_8BW7ibhryJzRRIh_LlMyQPEJuiilNvtPjFLZmOmgCenGoN3pRpRdVenGofzvU-xx9_dC_s1vf_hE8SsvA-yNwF3p_-O9ifX3dLC96DzZ2rEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196516498</pqid></control><display><type>article</type><title>The type III protein translocation system of enteropathogenic Escherichia coli involves EspA–EspB protein interactions</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Hartland, Elizabeth L. ; Daniell, Sarah J. ; Delahay, Robin M. ; Neves, Bianca C. ; Wallis, Tim ; Shaw, Robert K ; Hale, Christine ; Knutton, Stuart ; Frankel, Gad</creator><creatorcontrib>Hartland, Elizabeth L. ; Daniell, Sarah J. ; Delahay, Robin M. ; Neves, Bianca C. ; Wallis, Tim ; Shaw, Robert K ; Hale, Christine ; Knutton, Stuart ; Frankel, Gad</creatorcontrib><description>Enteropathogenic Escherichia coli (EPEC), like many bacterial pathogens, use a type III secretion system to deliver effector proteins across the bacterial cell wall. In EPEC, four proteins, EspA, EspB, EspD and Tir are known to be exported by a type III secretion system and to be essential for ‘attaching and effacing’ (A/E) lesion formation, the hallmark of EPEC pathogenicity. EspA was recently shown to be a structural protein and a major component of a large, transiently expressed, filamentous surface organelle which forms a direct link between the bacterium and the host cell. In contrast, EspB is translocated into the host cell where it is localized to both membrane and cytosolic cell fractions. EspA and EspB are required for translocation of Tir to the host cell membrane suggesting that they may both be components of the translocation apparatus. In this study, we show that EspB co‐immunoprecipitates with the EspA filaments and that, during EPEC infection of HEp‐2 cells, EspB localizes closely with EspA. Using a number of binding assays, we also show that EspB can bind and be copurified with EspA. Nevertheless, binding of EspA filaments to the host cell membranes occurred even in the absence of EspB. These results suggest that following initial attachment of the EspA filaments to the target cells, EspB is delivered into the host cell membrane and that the interaction between EspA and EspB may be important for protein translocation.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1046/j.1365-2958.2000.01814.x</identifier><identifier>PMID: 10760148</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Animals ; Bacterial Outer Membrane Proteins - genetics ; Bacterial Outer Membrane Proteins - metabolism ; Bacterial Proteins - genetics ; Bacterial Proteins - immunology ; Bacterial Proteins - isolation &amp; purification ; Bacterial Proteins - metabolism ; Biological Transport ; Cell Line - microbiology ; Epithelial Cells - microbiology ; Escherichia coli ; Escherichia coli - metabolism ; Escherichia coli - pathogenicity ; Escherichia coli Proteins ; EspA protein ; EspB protein ; Glutathione Transferase - genetics ; Glutathione Transferase - isolation &amp; purification ; Glutathione Transferase - metabolism ; Humans ; Mice ; Mutation ; Precipitin Tests - methods ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism</subject><ispartof>Molecular microbiology, 2000-03, Vol.35 (6), p.1483-1492</ispartof><rights>Copyright Blackwell Scientific Publications Ltd. Mar 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4894-44b0516f598459b85bb01e79316b840300c53e25698a9cb8bda6d78fd6da5b163</citedby><cites>FETCH-LOGICAL-c4894-44b0516f598459b85bb01e79316b840300c53e25698a9cb8bda6d78fd6da5b163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1365-2958.2000.01814.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1365-2958.2000.01814.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10760148$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hartland, Elizabeth L.</creatorcontrib><creatorcontrib>Daniell, Sarah J.</creatorcontrib><creatorcontrib>Delahay, Robin M.</creatorcontrib><creatorcontrib>Neves, Bianca C.</creatorcontrib><creatorcontrib>Wallis, Tim</creatorcontrib><creatorcontrib>Shaw, Robert K</creatorcontrib><creatorcontrib>Hale, Christine</creatorcontrib><creatorcontrib>Knutton, Stuart</creatorcontrib><creatorcontrib>Frankel, Gad</creatorcontrib><title>The type III protein translocation system of enteropathogenic Escherichia coli involves EspA–EspB protein interactions</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Enteropathogenic Escherichia coli (EPEC), like many bacterial pathogens, use a type III secretion system to deliver effector proteins across the bacterial cell wall. In EPEC, four proteins, EspA, EspB, EspD and Tir are known to be exported by a type III secretion system and to be essential for ‘attaching and effacing’ (A/E) lesion formation, the hallmark of EPEC pathogenicity. EspA was recently shown to be a structural protein and a major component of a large, transiently expressed, filamentous surface organelle which forms a direct link between the bacterium and the host cell. In contrast, EspB is translocated into the host cell where it is localized to both membrane and cytosolic cell fractions. EspA and EspB are required for translocation of Tir to the host cell membrane suggesting that they may both be components of the translocation apparatus. In this study, we show that EspB co‐immunoprecipitates with the EspA filaments and that, during EPEC infection of HEp‐2 cells, EspB localizes closely with EspA. Using a number of binding assays, we also show that EspB can bind and be copurified with EspA. Nevertheless, binding of EspA filaments to the host cell membranes occurred even in the absence of EspB. These results suggest that following initial attachment of the EspA filaments to the target cells, EspB is delivered into the host cell membrane and that the interaction between EspA and EspB may be important for protein translocation.</description><subject>Animals</subject><subject>Bacterial Outer Membrane Proteins - genetics</subject><subject>Bacterial Outer Membrane Proteins - metabolism</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - immunology</subject><subject>Bacterial Proteins - isolation &amp; purification</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biological Transport</subject><subject>Cell Line - microbiology</subject><subject>Epithelial Cells - microbiology</subject><subject>Escherichia coli</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli - pathogenicity</subject><subject>Escherichia coli Proteins</subject><subject>EspA protein</subject><subject>EspB protein</subject><subject>Glutathione Transferase - genetics</subject><subject>Glutathione Transferase - isolation &amp; purification</subject><subject>Glutathione Transferase - metabolism</subject><subject>Humans</subject><subject>Mice</subject><subject>Mutation</subject><subject>Precipitin Tests - methods</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAURi0EokPhFZDFgl3CdfwTe8GiVIVGasWmSOws23EYjzJxiDPtzI534A15kjpMVSE2sLqW7vk-XesghAmUBJh4tykJFbyoFJdlBQAlEElYuX-CVo-Lp2gFikNBZfX1BL1IaQNAKAj6HJ0QqAUQJldof7P2eD6MHjdNg8cpzj4MeJ7MkProzBzigNMhzX6LY4f9MPspjmZex29-CA5fJLf2U3DrYLCLfcBhuI39rU95M579-vEzjw-PtWGJG7eUppfoWWf65F89zFP05ePFzfllcfX5U3N-dlU4JhUrGLPAiei4kowrK7m1QHytKBFWMqAAjlNfcaGkUc5K2xrR1rJrRWu4JYKeorfH3nzE951Ps96G5Hzfm8HHXdI1gapWVf1PkNScK0ZpBt_8BW7ibhryJzRRIh_LlMyQPEJuiilNvtPjFLZmOmgCenGoN3pRpRdVenGofzvU-xx9_dC_s1vf_hE8SsvA-yNwF3p_-O9ifX3dLC96DzZ2rEg</recordid><startdate>200003</startdate><enddate>200003</enddate><creator>Hartland, Elizabeth L.</creator><creator>Daniell, Sarah J.</creator><creator>Delahay, Robin M.</creator><creator>Neves, Bianca C.</creator><creator>Wallis, Tim</creator><creator>Shaw, Robert K</creator><creator>Hale, Christine</creator><creator>Knutton, Stuart</creator><creator>Frankel, Gad</creator><general>Blackwell Science Ltd</general><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200003</creationdate><title>The type III protein translocation system of enteropathogenic Escherichia coli involves EspA–EspB protein interactions</title><author>Hartland, Elizabeth L. ; Daniell, Sarah J. ; Delahay, Robin M. ; Neves, Bianca C. ; Wallis, Tim ; Shaw, Robert K ; Hale, Christine ; Knutton, Stuart ; Frankel, Gad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4894-44b0516f598459b85bb01e79316b840300c53e25698a9cb8bda6d78fd6da5b163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Animals</topic><topic>Bacterial Outer Membrane Proteins - genetics</topic><topic>Bacterial Outer Membrane Proteins - metabolism</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - immunology</topic><topic>Bacterial Proteins - isolation &amp; purification</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biological Transport</topic><topic>Cell Line - microbiology</topic><topic>Epithelial Cells - microbiology</topic><topic>Escherichia coli</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli - pathogenicity</topic><topic>Escherichia coli Proteins</topic><topic>EspA protein</topic><topic>EspB protein</topic><topic>Glutathione Transferase - genetics</topic><topic>Glutathione Transferase - isolation &amp; purification</topic><topic>Glutathione Transferase - metabolism</topic><topic>Humans</topic><topic>Mice</topic><topic>Mutation</topic><topic>Precipitin Tests - methods</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hartland, Elizabeth L.</creatorcontrib><creatorcontrib>Daniell, Sarah J.</creatorcontrib><creatorcontrib>Delahay, Robin M.</creatorcontrib><creatorcontrib>Neves, Bianca C.</creatorcontrib><creatorcontrib>Wallis, Tim</creatorcontrib><creatorcontrib>Shaw, Robert K</creatorcontrib><creatorcontrib>Hale, Christine</creatorcontrib><creatorcontrib>Knutton, Stuart</creatorcontrib><creatorcontrib>Frankel, Gad</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hartland, Elizabeth L.</au><au>Daniell, Sarah J.</au><au>Delahay, Robin M.</au><au>Neves, Bianca C.</au><au>Wallis, Tim</au><au>Shaw, Robert K</au><au>Hale, Christine</au><au>Knutton, Stuart</au><au>Frankel, Gad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The type III protein translocation system of enteropathogenic Escherichia coli involves EspA–EspB protein interactions</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2000-03</date><risdate>2000</risdate><volume>35</volume><issue>6</issue><spage>1483</spage><epage>1492</epage><pages>1483-1492</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>Enteropathogenic Escherichia coli (EPEC), like many bacterial pathogens, use a type III secretion system to deliver effector proteins across the bacterial cell wall. In EPEC, four proteins, EspA, EspB, EspD and Tir are known to be exported by a type III secretion system and to be essential for ‘attaching and effacing’ (A/E) lesion formation, the hallmark of EPEC pathogenicity. EspA was recently shown to be a structural protein and a major component of a large, transiently expressed, filamentous surface organelle which forms a direct link between the bacterium and the host cell. In contrast, EspB is translocated into the host cell where it is localized to both membrane and cytosolic cell fractions. EspA and EspB are required for translocation of Tir to the host cell membrane suggesting that they may both be components of the translocation apparatus. In this study, we show that EspB co‐immunoprecipitates with the EspA filaments and that, during EPEC infection of HEp‐2 cells, EspB localizes closely with EspA. Using a number of binding assays, we also show that EspB can bind and be copurified with EspA. Nevertheless, binding of EspA filaments to the host cell membranes occurred even in the absence of EspB. These results suggest that following initial attachment of the EspA filaments to the target cells, EspB is delivered into the host cell membrane and that the interaction between EspA and EspB may be important for protein translocation.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>10760148</pmid><doi>10.1046/j.1365-2958.2000.01814.x</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0950-382X
ispartof Molecular microbiology, 2000-03, Vol.35 (6), p.1483-1492
issn 0950-382X
1365-2958
language eng
recordid cdi_proquest_miscellaneous_71027927
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry
subjects Animals
Bacterial Outer Membrane Proteins - genetics
Bacterial Outer Membrane Proteins - metabolism
Bacterial Proteins - genetics
Bacterial Proteins - immunology
Bacterial Proteins - isolation & purification
Bacterial Proteins - metabolism
Biological Transport
Cell Line - microbiology
Epithelial Cells - microbiology
Escherichia coli
Escherichia coli - metabolism
Escherichia coli - pathogenicity
Escherichia coli Proteins
EspA protein
EspB protein
Glutathione Transferase - genetics
Glutathione Transferase - isolation & purification
Glutathione Transferase - metabolism
Humans
Mice
Mutation
Precipitin Tests - methods
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - metabolism
title The type III protein translocation system of enteropathogenic Escherichia coli involves EspA–EspB protein interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T03%3A40%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20type%20III%20protein%20translocation%20system%20of%20enteropathogenic%20Escherichia%20coli%20involves%20EspA%E2%80%93EspB%20protein%20interactions&rft.jtitle=Molecular%20microbiology&rft.au=Hartland,%20Elizabeth%20L.&rft.date=2000-03&rft.volume=35&rft.issue=6&rft.spage=1483&rft.epage=1492&rft.pages=1483-1492&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1046/j.1365-2958.2000.01814.x&rft_dat=%3Cproquest_cross%3E71027927%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196516498&rft_id=info:pmid/10760148&rfr_iscdi=true