Monitoring the Conformational Fluctuations of DNA Hairpins Using Single-Pair Fluorescence Resonance Energy Transfer

We present single-pair fluorescence resonance energy transfer (spFRET) observations of individual opening and closing events of surface-immobilized DNA hairpins. Two glass−surface immobilization strategies employing the biotin−streptavidin interaction and a third covalent immobilization strategy inv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2001-05, Vol.123 (18), p.4295-4303
Hauptverfasser: Grunwell, Jocelyn R, Glass, Jennifer L, Lacoste, Thilo D, Deniz, Ashok A, Chemla, Daniel S, Schultz, Peter G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4303
container_issue 18
container_start_page 4295
container_title Journal of the American Chemical Society
container_volume 123
creator Grunwell, Jocelyn R
Glass, Jennifer L
Lacoste, Thilo D
Deniz, Ashok A
Chemla, Daniel S
Schultz, Peter G
description We present single-pair fluorescence resonance energy transfer (spFRET) observations of individual opening and closing events of surface-immobilized DNA hairpins. Two glass−surface immobilization strategies employing the biotin−streptavidin interaction and a third covalent immobilization strategy involving formation of a disulfide bond to a thiol-derivatized glass surface are described and evaluated. Results from image and time-trace data from surface-immobilized molecules are compared with those from freely diffusing molecules, which are unperturbed by surface interactions. Using a simple two-state model to analyze the open and closed time distributions for immobilized hairpins, we calculate the lifetimes of the two states. For hairpins with a loop size of 40 adenosines and a stem size of either seven or nine bases, the respective closed-state lifetimes are 45 ± 2.4 and 103 ± 6.0 ms, while the respective open-state lifetimes are 133 ± 5.5 and 142 ± 22 ms. These results show that the open state of the hairpin is favored over the closed state of the hairpin under these conditions, consistent with previous diffusion fluorescence correlation spectroscopy (FCS) experiments on poly(A)-loop hairpins. The measured open-state lifetime is about 30 times longer than the calculated 3 ms open-state lifetime for both hairpins based on a closing rate scaling factor derived from a previous FCS study for hairpins in diffusion with 12−30 thymidines in their loops. As predicted, the closed-state lifetime is dependent on the stem length and is independent of the loop characteristics. Our findings indicate that current models should consider sequence dependence in calculating ssDNA thermostability. The surface immobilization chemistries and other experimental techniques described here should prove useful for studies of single-molecule populations and dynamics.
doi_str_mv 10.1021/ja0027620
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71019692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71019692</sourcerecordid><originalsourceid>FETCH-LOGICAL-a415t-e64583cbbf6d2a056c7de18bdb25a708c4407798bf7a2c91e6373959e741a2a93</originalsourceid><addsrcrecordid>eNptkM1OwzAQhC0EouXnwAugXEDiELCd2E6OUFqKKFBoe7YcdwMpSVzsRIK3x6VVuXDxena_HVuD0AnBlwRTcrVQGFPBKd5BXcIoDhmhfBd1sW-HIuFRBx04t_AypgnZRx1CYiZIyrvIPZq6aIwt6regeYegZ-rc2Eo1halVGQzKVjftr3KByYPbp-tgqAq7LLyeudXWxB8lhGPfXeHGgtNQawhewXmP1a1fg337DqZW1S4He4T2clU6ON7UQzQb9Ke9YTh6vrvvXY9CFRPWhMBjlkQ6y3I-pwozrsUcSJLNM8qUwImOYyxEmmS5UFSnBHgkopSlIGKiqEqjQ3S-9l1a89mCa2RV-L-VparBtE4Kgn0GKfXgxRrU1jhnIZdLW1TKfkuC5SphuU3Ys6cb0zarYP5HbiL1QLgGCtfA13au7IfkIhJMTscT-XAzGA1fxkM59vzZmlfayYVprc_d_fPwD3Zikck</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71019692</pqid></control><display><type>article</type><title>Monitoring the Conformational Fluctuations of DNA Hairpins Using Single-Pair Fluorescence Resonance Energy Transfer</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Grunwell, Jocelyn R ; Glass, Jennifer L ; Lacoste, Thilo D ; Deniz, Ashok A ; Chemla, Daniel S ; Schultz, Peter G</creator><creatorcontrib>Grunwell, Jocelyn R ; Glass, Jennifer L ; Lacoste, Thilo D ; Deniz, Ashok A ; Chemla, Daniel S ; Schultz, Peter G</creatorcontrib><description>We present single-pair fluorescence resonance energy transfer (spFRET) observations of individual opening and closing events of surface-immobilized DNA hairpins. Two glass−surface immobilization strategies employing the biotin−streptavidin interaction and a third covalent immobilization strategy involving formation of a disulfide bond to a thiol-derivatized glass surface are described and evaluated. Results from image and time-trace data from surface-immobilized molecules are compared with those from freely diffusing molecules, which are unperturbed by surface interactions. Using a simple two-state model to analyze the open and closed time distributions for immobilized hairpins, we calculate the lifetimes of the two states. For hairpins with a loop size of 40 adenosines and a stem size of either seven or nine bases, the respective closed-state lifetimes are 45 ± 2.4 and 103 ± 6.0 ms, while the respective open-state lifetimes are 133 ± 5.5 and 142 ± 22 ms. These results show that the open state of the hairpin is favored over the closed state of the hairpin under these conditions, consistent with previous diffusion fluorescence correlation spectroscopy (FCS) experiments on poly(A)-loop hairpins. The measured open-state lifetime is about 30 times longer than the calculated 3 ms open-state lifetime for both hairpins based on a closing rate scaling factor derived from a previous FCS study for hairpins in diffusion with 12−30 thymidines in their loops. As predicted, the closed-state lifetime is dependent on the stem length and is independent of the loop characteristics. Our findings indicate that current models should consider sequence dependence in calculating ssDNA thermostability. The surface immobilization chemistries and other experimental techniques described here should prove useful for studies of single-molecule populations and dynamics.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja0027620</identifier><identifier>PMID: 11457196</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Anisotropy ; Biotin - chemistry ; Diffusion ; Disulfides - chemistry ; DNA - chemistry ; Energy Transfer ; Free Radical Scavengers - chemistry ; Maleimides - chemistry ; Microscopy, Confocal ; Nucleic Acid Conformation ; Nucleic Acid Denaturation ; Phosphorylation ; Spectrometry, Fluorescence ; Streptavidin - chemistry ; Sulfhydryl Compounds - chemistry</subject><ispartof>Journal of the American Chemical Society, 2001-05, Vol.123 (18), p.4295-4303</ispartof><rights>Copyright © 2001 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a415t-e64583cbbf6d2a056c7de18bdb25a708c4407798bf7a2c91e6373959e741a2a93</citedby><cites>FETCH-LOGICAL-a415t-e64583cbbf6d2a056c7de18bdb25a708c4407798bf7a2c91e6373959e741a2a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja0027620$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja0027620$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11457196$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grunwell, Jocelyn R</creatorcontrib><creatorcontrib>Glass, Jennifer L</creatorcontrib><creatorcontrib>Lacoste, Thilo D</creatorcontrib><creatorcontrib>Deniz, Ashok A</creatorcontrib><creatorcontrib>Chemla, Daniel S</creatorcontrib><creatorcontrib>Schultz, Peter G</creatorcontrib><title>Monitoring the Conformational Fluctuations of DNA Hairpins Using Single-Pair Fluorescence Resonance Energy Transfer</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>We present single-pair fluorescence resonance energy transfer (spFRET) observations of individual opening and closing events of surface-immobilized DNA hairpins. Two glass−surface immobilization strategies employing the biotin−streptavidin interaction and a third covalent immobilization strategy involving formation of a disulfide bond to a thiol-derivatized glass surface are described and evaluated. Results from image and time-trace data from surface-immobilized molecules are compared with those from freely diffusing molecules, which are unperturbed by surface interactions. Using a simple two-state model to analyze the open and closed time distributions for immobilized hairpins, we calculate the lifetimes of the two states. For hairpins with a loop size of 40 adenosines and a stem size of either seven or nine bases, the respective closed-state lifetimes are 45 ± 2.4 and 103 ± 6.0 ms, while the respective open-state lifetimes are 133 ± 5.5 and 142 ± 22 ms. These results show that the open state of the hairpin is favored over the closed state of the hairpin under these conditions, consistent with previous diffusion fluorescence correlation spectroscopy (FCS) experiments on poly(A)-loop hairpins. The measured open-state lifetime is about 30 times longer than the calculated 3 ms open-state lifetime for both hairpins based on a closing rate scaling factor derived from a previous FCS study for hairpins in diffusion with 12−30 thymidines in their loops. As predicted, the closed-state lifetime is dependent on the stem length and is independent of the loop characteristics. Our findings indicate that current models should consider sequence dependence in calculating ssDNA thermostability. The surface immobilization chemistries and other experimental techniques described here should prove useful for studies of single-molecule populations and dynamics.</description><subject>Anisotropy</subject><subject>Biotin - chemistry</subject><subject>Diffusion</subject><subject>Disulfides - chemistry</subject><subject>DNA - chemistry</subject><subject>Energy Transfer</subject><subject>Free Radical Scavengers - chemistry</subject><subject>Maleimides - chemistry</subject><subject>Microscopy, Confocal</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleic Acid Denaturation</subject><subject>Phosphorylation</subject><subject>Spectrometry, Fluorescence</subject><subject>Streptavidin - chemistry</subject><subject>Sulfhydryl Compounds - chemistry</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkM1OwzAQhC0EouXnwAugXEDiELCd2E6OUFqKKFBoe7YcdwMpSVzsRIK3x6VVuXDxena_HVuD0AnBlwRTcrVQGFPBKd5BXcIoDhmhfBd1sW-HIuFRBx04t_AypgnZRx1CYiZIyrvIPZq6aIwt6regeYegZ-rc2Eo1halVGQzKVjftr3KByYPbp-tgqAq7LLyeudXWxB8lhGPfXeHGgtNQawhewXmP1a1fg337DqZW1S4He4T2clU6ON7UQzQb9Ke9YTh6vrvvXY9CFRPWhMBjlkQ6y3I-pwozrsUcSJLNM8qUwImOYyxEmmS5UFSnBHgkopSlIGKiqEqjQ3S-9l1a89mCa2RV-L-VparBtE4Kgn0GKfXgxRrU1jhnIZdLW1TKfkuC5SphuU3Ys6cb0zarYP5HbiL1QLgGCtfA13au7IfkIhJMTscT-XAzGA1fxkM59vzZmlfayYVprc_d_fPwD3Zikck</recordid><startdate>20010509</startdate><enddate>20010509</enddate><creator>Grunwell, Jocelyn R</creator><creator>Glass, Jennifer L</creator><creator>Lacoste, Thilo D</creator><creator>Deniz, Ashok A</creator><creator>Chemla, Daniel S</creator><creator>Schultz, Peter G</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20010509</creationdate><title>Monitoring the Conformational Fluctuations of DNA Hairpins Using Single-Pair Fluorescence Resonance Energy Transfer</title><author>Grunwell, Jocelyn R ; Glass, Jennifer L ; Lacoste, Thilo D ; Deniz, Ashok A ; Chemla, Daniel S ; Schultz, Peter G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a415t-e64583cbbf6d2a056c7de18bdb25a708c4407798bf7a2c91e6373959e741a2a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Anisotropy</topic><topic>Biotin - chemistry</topic><topic>Diffusion</topic><topic>Disulfides - chemistry</topic><topic>DNA - chemistry</topic><topic>Energy Transfer</topic><topic>Free Radical Scavengers - chemistry</topic><topic>Maleimides - chemistry</topic><topic>Microscopy, Confocal</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleic Acid Denaturation</topic><topic>Phosphorylation</topic><topic>Spectrometry, Fluorescence</topic><topic>Streptavidin - chemistry</topic><topic>Sulfhydryl Compounds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grunwell, Jocelyn R</creatorcontrib><creatorcontrib>Glass, Jennifer L</creatorcontrib><creatorcontrib>Lacoste, Thilo D</creatorcontrib><creatorcontrib>Deniz, Ashok A</creatorcontrib><creatorcontrib>Chemla, Daniel S</creatorcontrib><creatorcontrib>Schultz, Peter G</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grunwell, Jocelyn R</au><au>Glass, Jennifer L</au><au>Lacoste, Thilo D</au><au>Deniz, Ashok A</au><au>Chemla, Daniel S</au><au>Schultz, Peter G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monitoring the Conformational Fluctuations of DNA Hairpins Using Single-Pair Fluorescence Resonance Energy Transfer</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2001-05-09</date><risdate>2001</risdate><volume>123</volume><issue>18</issue><spage>4295</spage><epage>4303</epage><pages>4295-4303</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>We present single-pair fluorescence resonance energy transfer (spFRET) observations of individual opening and closing events of surface-immobilized DNA hairpins. Two glass−surface immobilization strategies employing the biotin−streptavidin interaction and a third covalent immobilization strategy involving formation of a disulfide bond to a thiol-derivatized glass surface are described and evaluated. Results from image and time-trace data from surface-immobilized molecules are compared with those from freely diffusing molecules, which are unperturbed by surface interactions. Using a simple two-state model to analyze the open and closed time distributions for immobilized hairpins, we calculate the lifetimes of the two states. For hairpins with a loop size of 40 adenosines and a stem size of either seven or nine bases, the respective closed-state lifetimes are 45 ± 2.4 and 103 ± 6.0 ms, while the respective open-state lifetimes are 133 ± 5.5 and 142 ± 22 ms. These results show that the open state of the hairpin is favored over the closed state of the hairpin under these conditions, consistent with previous diffusion fluorescence correlation spectroscopy (FCS) experiments on poly(A)-loop hairpins. The measured open-state lifetime is about 30 times longer than the calculated 3 ms open-state lifetime for both hairpins based on a closing rate scaling factor derived from a previous FCS study for hairpins in diffusion with 12−30 thymidines in their loops. As predicted, the closed-state lifetime is dependent on the stem length and is independent of the loop characteristics. Our findings indicate that current models should consider sequence dependence in calculating ssDNA thermostability. The surface immobilization chemistries and other experimental techniques described here should prove useful for studies of single-molecule populations and dynamics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>11457196</pmid><doi>10.1021/ja0027620</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2001-05, Vol.123 (18), p.4295-4303
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_71019692
source MEDLINE; American Chemical Society Journals
subjects Anisotropy
Biotin - chemistry
Diffusion
Disulfides - chemistry
DNA - chemistry
Energy Transfer
Free Radical Scavengers - chemistry
Maleimides - chemistry
Microscopy, Confocal
Nucleic Acid Conformation
Nucleic Acid Denaturation
Phosphorylation
Spectrometry, Fluorescence
Streptavidin - chemistry
Sulfhydryl Compounds - chemistry
title Monitoring the Conformational Fluctuations of DNA Hairpins Using Single-Pair Fluorescence Resonance Energy Transfer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A56%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monitoring%20the%20Conformational%20Fluctuations%20of%20DNA%20Hairpins%20Using%20Single-Pair%20Fluorescence%20Resonance%20Energy%20Transfer&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Grunwell,%20Jocelyn%20R&rft.date=2001-05-09&rft.volume=123&rft.issue=18&rft.spage=4295&rft.epage=4303&rft.pages=4295-4303&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja0027620&rft_dat=%3Cproquest_cross%3E71019692%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71019692&rft_id=info:pmid/11457196&rfr_iscdi=true