Micromere descendants at the blastula stage are involved in normal archenteron formation in sea urchin embryos
Several lines of evidence suggest that micromere signaling plays a key role in endo-mesoderm differentiation along the animal-vegetal (A-V) axis in sea urchin embryos. A recent study has suggested that the activity of micromeres of inducing endoderm differentiation of mesomere descendants is, unexpe...
Gespeichert in:
Veröffentlicht in: | Development genes and evolution 2001-02, Vol.211 (2), p.83-88 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 88 |
---|---|
container_issue | 2 |
container_start_page | 83 |
container_title | Development genes and evolution |
container_volume | 211 |
creator | Ishizuka, Y Minokawa, T Amemiya, S |
description | Several lines of evidence suggest that micromere signaling plays a key role in endo-mesoderm differentiation along the animal-vegetal (A-V) axis in sea urchin embryos. A recent study has suggested that the activity of micromeres of inducing endoderm differentiation of mesomere descendants is, unexpectedly, maximal at the hatching blastula stage in the echinoids Scaphechinus mirabiris and Hemicentrotus pulcherrimus. In the present study, to confirm the inductive capacity of the micromere descendants in normal development, the timing of initiation of gastrulation and the elongation rate of the archenteron were examined in both micromereless embryos and in micromereless embryos cultured until the hatching blastula stage and then recombined with micromere descendants of the same age. The micromereless embryos consistently exhibited a delay in the initiation of gastrulation and a decrease in elongation rate of the archenteron, as compared with those in controls. In contrast, when the micromereless embryos cultured until the hatching blastula stage were recombined with micromere descendants of the same age, the recombinant embryos exhibited rescue of both the delay in initiation of gastrulation and a decrease in elongation rate of the archenteron. The delayed expression of alkaline phosphatase activity, an endoderm-specific marker, in the micromereless embryos was also rescued in the recombinant embryos. The recombined micromere descendants formed the larval spicules in the same schedule as that observed in the controls. These results indicate that at the hatching blastula stage, micromere descendants emanate a signal(s) required for normal gastrulation of the presumptive endo-mesodermal region. |
doi_str_mv | 10.1007/s004270000120 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71018271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71018271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-89a7b66dba19d98242bb6a4742a275b9b0c5f21be3b15e66ef755b2b20318e4a3</originalsourceid><addsrcrecordid>eNqFkc1LxDAQxYMo7rp69CrBg7dqJk2a9CjiFyheFLyVpJ1qpU3XJF3Y_94sLohenMs8Zn4MvHmEHAM7B8bURWBMcMVSAWc7ZA4i5xkT8LpL5qwUZVYK8TojByF8bJAyl_tkBiCkFKDnxD12tR8H9EgbDDW6xrgYqIk0viO1vQlx6g0N0bwhNYnq3GrsV9gkQd3oB9Oncf2OLqIfHW03o9gllfYBDZ3SMkkcrF-P4ZDstaYPeLTtC_Jyc_18dZc9PN3eX10-ZLWAPGa6NMoWRWMNlE2pueDWFkYowQ1X0paW1bLlYDG3ILEosFVSWm45y0GjMPmCnH3fXfrxc8IQq6FL7vreOBynUClgoLmCf0HQUheSiQSe_gE_xsm7ZKLSWmimVC4TlH1D6acheGyrpe8G49cVsGoTV_UrrsSfbI9OdsDmh97mk38BzCSQQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884807735</pqid></control><display><type>article</type><title>Micromere descendants at the blastula stage are involved in normal archenteron formation in sea urchin embryos</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ishizuka, Y ; Minokawa, T ; Amemiya, S</creator><creatorcontrib>Ishizuka, Y ; Minokawa, T ; Amemiya, S</creatorcontrib><description>Several lines of evidence suggest that micromere signaling plays a key role in endo-mesoderm differentiation along the animal-vegetal (A-V) axis in sea urchin embryos. A recent study has suggested that the activity of micromeres of inducing endoderm differentiation of mesomere descendants is, unexpectedly, maximal at the hatching blastula stage in the echinoids Scaphechinus mirabiris and Hemicentrotus pulcherrimus. In the present study, to confirm the inductive capacity of the micromere descendants in normal development, the timing of initiation of gastrulation and the elongation rate of the archenteron were examined in both micromereless embryos and in micromereless embryos cultured until the hatching blastula stage and then recombined with micromere descendants of the same age. The micromereless embryos consistently exhibited a delay in the initiation of gastrulation and a decrease in elongation rate of the archenteron, as compared with those in controls. In contrast, when the micromereless embryos cultured until the hatching blastula stage were recombined with micromere descendants of the same age, the recombinant embryos exhibited rescue of both the delay in initiation of gastrulation and a decrease in elongation rate of the archenteron. The delayed expression of alkaline phosphatase activity, an endoderm-specific marker, in the micromereless embryos was also rescued in the recombinant embryos. The recombined micromere descendants formed the larval spicules in the same schedule as that observed in the controls. These results indicate that at the hatching blastula stage, micromere descendants emanate a signal(s) required for normal gastrulation of the presumptive endo-mesodermal region.</description><identifier>ISSN: 0949-944X</identifier><identifier>EISSN: 1432-041X</identifier><identifier>DOI: 10.1007/s004270000120</identifier><identifier>PMID: 11455418</identifier><language>eng</language><publisher>Germany: Springer Nature B.V</publisher><subject>Alkaline Phosphatase - metabolism ; Animals ; Blastomeres - cytology ; Echinoidea ; Embryo, Nonmammalian - cytology ; Embryo, Nonmammalian - embryology ; Embryonic Induction - physiology ; Endoderm - cytology ; Endoderm - physiology ; Evacuations & rescues ; Gastrula - cytology ; Gastrula - physiology ; Morphogenesis ; Sea Urchins - cytology ; Sea Urchins - embryology ; Time Factors</subject><ispartof>Development genes and evolution, 2001-02, Vol.211 (2), p.83-88</ispartof><rights>Springer-Verlag 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-89a7b66dba19d98242bb6a4742a275b9b0c5f21be3b15e66ef755b2b20318e4a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11455418$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ishizuka, Y</creatorcontrib><creatorcontrib>Minokawa, T</creatorcontrib><creatorcontrib>Amemiya, S</creatorcontrib><title>Micromere descendants at the blastula stage are involved in normal archenteron formation in sea urchin embryos</title><title>Development genes and evolution</title><addtitle>Dev Genes Evol</addtitle><description>Several lines of evidence suggest that micromere signaling plays a key role in endo-mesoderm differentiation along the animal-vegetal (A-V) axis in sea urchin embryos. A recent study has suggested that the activity of micromeres of inducing endoderm differentiation of mesomere descendants is, unexpectedly, maximal at the hatching blastula stage in the echinoids Scaphechinus mirabiris and Hemicentrotus pulcherrimus. In the present study, to confirm the inductive capacity of the micromere descendants in normal development, the timing of initiation of gastrulation and the elongation rate of the archenteron were examined in both micromereless embryos and in micromereless embryos cultured until the hatching blastula stage and then recombined with micromere descendants of the same age. The micromereless embryos consistently exhibited a delay in the initiation of gastrulation and a decrease in elongation rate of the archenteron, as compared with those in controls. In contrast, when the micromereless embryos cultured until the hatching blastula stage were recombined with micromere descendants of the same age, the recombinant embryos exhibited rescue of both the delay in initiation of gastrulation and a decrease in elongation rate of the archenteron. The delayed expression of alkaline phosphatase activity, an endoderm-specific marker, in the micromereless embryos was also rescued in the recombinant embryos. The recombined micromere descendants formed the larval spicules in the same schedule as that observed in the controls. These results indicate that at the hatching blastula stage, micromere descendants emanate a signal(s) required for normal gastrulation of the presumptive endo-mesodermal region.</description><subject>Alkaline Phosphatase - metabolism</subject><subject>Animals</subject><subject>Blastomeres - cytology</subject><subject>Echinoidea</subject><subject>Embryo, Nonmammalian - cytology</subject><subject>Embryo, Nonmammalian - embryology</subject><subject>Embryonic Induction - physiology</subject><subject>Endoderm - cytology</subject><subject>Endoderm - physiology</subject><subject>Evacuations & rescues</subject><subject>Gastrula - cytology</subject><subject>Gastrula - physiology</subject><subject>Morphogenesis</subject><subject>Sea Urchins - cytology</subject><subject>Sea Urchins - embryology</subject><subject>Time Factors</subject><issn>0949-944X</issn><issn>1432-041X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkc1LxDAQxYMo7rp69CrBg7dqJk2a9CjiFyheFLyVpJ1qpU3XJF3Y_94sLohenMs8Zn4MvHmEHAM7B8bURWBMcMVSAWc7ZA4i5xkT8LpL5qwUZVYK8TojByF8bJAyl_tkBiCkFKDnxD12tR8H9EgbDDW6xrgYqIk0viO1vQlx6g0N0bwhNYnq3GrsV9gkQd3oB9Oncf2OLqIfHW03o9gllfYBDZ3SMkkcrF-P4ZDstaYPeLTtC_Jyc_18dZc9PN3eX10-ZLWAPGa6NMoWRWMNlE2pueDWFkYowQ1X0paW1bLlYDG3ILEosFVSWm45y0GjMPmCnH3fXfrxc8IQq6FL7vreOBynUClgoLmCf0HQUheSiQSe_gE_xsm7ZKLSWmimVC4TlH1D6acheGyrpe8G49cVsGoTV_UrrsSfbI9OdsDmh97mk38BzCSQQA</recordid><startdate>20010201</startdate><enddate>20010201</enddate><creator>Ishizuka, Y</creator><creator>Minokawa, T</creator><creator>Amemiya, S</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope></search><sort><creationdate>20010201</creationdate><title>Micromere descendants at the blastula stage are involved in normal archenteron formation in sea urchin embryos</title><author>Ishizuka, Y ; Minokawa, T ; Amemiya, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-89a7b66dba19d98242bb6a4742a275b9b0c5f21be3b15e66ef755b2b20318e4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Alkaline Phosphatase - metabolism</topic><topic>Animals</topic><topic>Blastomeres - cytology</topic><topic>Echinoidea</topic><topic>Embryo, Nonmammalian - cytology</topic><topic>Embryo, Nonmammalian - embryology</topic><topic>Embryonic Induction - physiology</topic><topic>Endoderm - cytology</topic><topic>Endoderm - physiology</topic><topic>Evacuations & rescues</topic><topic>Gastrula - cytology</topic><topic>Gastrula - physiology</topic><topic>Morphogenesis</topic><topic>Sea Urchins - cytology</topic><topic>Sea Urchins - embryology</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishizuka, Y</creatorcontrib><creatorcontrib>Minokawa, T</creatorcontrib><creatorcontrib>Amemiya, S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Development genes and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishizuka, Y</au><au>Minokawa, T</au><au>Amemiya, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micromere descendants at the blastula stage are involved in normal archenteron formation in sea urchin embryos</atitle><jtitle>Development genes and evolution</jtitle><addtitle>Dev Genes Evol</addtitle><date>2001-02-01</date><risdate>2001</risdate><volume>211</volume><issue>2</issue><spage>83</spage><epage>88</epage><pages>83-88</pages><issn>0949-944X</issn><eissn>1432-041X</eissn><abstract>Several lines of evidence suggest that micromere signaling plays a key role in endo-mesoderm differentiation along the animal-vegetal (A-V) axis in sea urchin embryos. A recent study has suggested that the activity of micromeres of inducing endoderm differentiation of mesomere descendants is, unexpectedly, maximal at the hatching blastula stage in the echinoids Scaphechinus mirabiris and Hemicentrotus pulcherrimus. In the present study, to confirm the inductive capacity of the micromere descendants in normal development, the timing of initiation of gastrulation and the elongation rate of the archenteron were examined in both micromereless embryos and in micromereless embryos cultured until the hatching blastula stage and then recombined with micromere descendants of the same age. The micromereless embryos consistently exhibited a delay in the initiation of gastrulation and a decrease in elongation rate of the archenteron, as compared with those in controls. In contrast, when the micromereless embryos cultured until the hatching blastula stage were recombined with micromere descendants of the same age, the recombinant embryos exhibited rescue of both the delay in initiation of gastrulation and a decrease in elongation rate of the archenteron. The delayed expression of alkaline phosphatase activity, an endoderm-specific marker, in the micromereless embryos was also rescued in the recombinant embryos. The recombined micromere descendants formed the larval spicules in the same schedule as that observed in the controls. These results indicate that at the hatching blastula stage, micromere descendants emanate a signal(s) required for normal gastrulation of the presumptive endo-mesodermal region.</abstract><cop>Germany</cop><pub>Springer Nature B.V</pub><pmid>11455418</pmid><doi>10.1007/s004270000120</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0949-944X |
ispartof | Development genes and evolution, 2001-02, Vol.211 (2), p.83-88 |
issn | 0949-944X 1432-041X |
language | eng |
recordid | cdi_proquest_miscellaneous_71018271 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Alkaline Phosphatase - metabolism Animals Blastomeres - cytology Echinoidea Embryo, Nonmammalian - cytology Embryo, Nonmammalian - embryology Embryonic Induction - physiology Endoderm - cytology Endoderm - physiology Evacuations & rescues Gastrula - cytology Gastrula - physiology Morphogenesis Sea Urchins - cytology Sea Urchins - embryology Time Factors |
title | Micromere descendants at the blastula stage are involved in normal archenteron formation in sea urchin embryos |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A05%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micromere%20descendants%20at%20the%20blastula%20stage%20are%20involved%20in%20normal%20archenteron%20formation%20in%20sea%20urchin%20embryos&rft.jtitle=Development%20genes%20and%20evolution&rft.au=Ishizuka,%20Y&rft.date=2001-02-01&rft.volume=211&rft.issue=2&rft.spage=83&rft.epage=88&rft.pages=83-88&rft.issn=0949-944X&rft.eissn=1432-041X&rft_id=info:doi/10.1007/s004270000120&rft_dat=%3Cproquest_cross%3E71018271%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884807735&rft_id=info:pmid/11455418&rfr_iscdi=true |