UV dose distribution characterization using fractal concepts for system performance evaluation

This paper presents a mathematical model for estimating the UV dose distribution delivered by continuous-flow UV disinfection processes. The model adopts fractal concepts and a stochastic method to simulate microorganism (particle) trajectories through the irradiation zone of an open-channel UV syst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water science and technology 2001-01, Vol.43 (11), p.181-188
Hauptverfasser: LIN, L-S, BIATCHLEY, E. R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 188
container_issue 11
container_start_page 181
container_title Water science and technology
container_volume 43
creator LIN, L-S
BIATCHLEY, E. R
description This paper presents a mathematical model for estimating the UV dose distribution delivered by continuous-flow UV disinfection processes. The model adopts fractal concepts and a stochastic method to simulate microorganism (particle) trajectories through the irradiation zone of an open-channel UV system. The irregularity of particle trajectories attributable to random movements was characterized by fractal dimension. In turn, trajectory-specific doses were calculated by integrating UV intensity over travel time. Results of these simulations indicated that radiation intensities along the trajectories could be highly variable. Therefore, microorganisms are expected to receive a broad range of radiation doses as a result of variations in radiation intensity along their trajectories and spatial heterogeneity in the radiation intensity field. This supports previous assertions that the conventional averaged-dose approach will result in substantial deviations between predicted and actual system performance. Implications of the results in terms of treatment efficiency and system design are discussed. The presented approach is found to be useful as a tool for rapid estimation of the dose distribution delivered by UV processes.
doi_str_mv 10.2166/wst.2001.0681
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70994970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29952855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-4050f6e177b1a2a67eb1980046e3d79049d47392128ab5e14b6d922da3251fe53</originalsourceid><addsrcrecordid>eNqN0ctrFTEUBvCgFXtbXbqVgOJuruecvCZLKb6g0E3r0pDJZHTKPK7JjFL_enPbC0o3dRVy8stHyMfYC4QtodZvf-VlSwC4BV3jI7ZBa3VljaDH7AQtABEZwCO2ATKiQiJxzE5yvgYAIyQ8ZceIUgqrccO-Xn3h7Zwjb_u8pL5Zl36eePjukw9LTP1vfztYcz99491-6Ace5inE3ZJ5Nyeeb_ISR76LqexGX054_OmH9fbiM_ak80OOzw_rKbv68P7y7FN1fvHx89m78yqUdyyVBAWdjmhMg568NrFBWwNIHUVrLEjbSiMsIdW-URFlo1tL1HpBCruoxCl7c5e7S_OPNebFjX0OcRj8FOc1OwPWSmvgQUjWKqqV-g9oalkb8yDEGo0kRQW-ugev5zVN5VscWimEwhp0UdWdCmnOOcXO7VI_-nTjENy-flfqd_v63b7-4l8eUtdmjO1ffai4gNcH4HPwQ-lwCn3-JxVrq434A-TDtOU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1943351806</pqid></control><display><type>article</type><title>UV dose distribution characterization using fractal concepts for system performance evaluation</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>LIN, L-S ; BIATCHLEY, E. R</creator><contributor>Lesouef, A ; Haas, C ; Watanabe, Y ; ven der Vlies, AW ; Nagle, PT (eds) ; House, M ; Gilbert, J ; Grabow, WOK ; Nielsen, J ; Wanner, J ; Milburn, A ; Villesot, D ; Purdon, CD</contributor><creatorcontrib>LIN, L-S ; BIATCHLEY, E. R ; Lesouef, A ; Haas, C ; Watanabe, Y ; ven der Vlies, AW ; Nagle, PT (eds) ; House, M ; Gilbert, J ; Grabow, WOK ; Nielsen, J ; Wanner, J ; Milburn, A ; Villesot, D ; Purdon, CD</creatorcontrib><description>This paper presents a mathematical model for estimating the UV dose distribution delivered by continuous-flow UV disinfection processes. The model adopts fractal concepts and a stochastic method to simulate microorganism (particle) trajectories through the irradiation zone of an open-channel UV system. The irregularity of particle trajectories attributable to random movements was characterized by fractal dimension. In turn, trajectory-specific doses were calculated by integrating UV intensity over travel time. Results of these simulations indicated that radiation intensities along the trajectories could be highly variable. Therefore, microorganisms are expected to receive a broad range of radiation doses as a result of variations in radiation intensity along their trajectories and spatial heterogeneity in the radiation intensity field. This supports previous assertions that the conventional averaged-dose approach will result in substantial deviations between predicted and actual system performance. Implications of the results in terms of treatment efficiency and system design are discussed. The presented approach is found to be useful as a tool for rapid estimation of the dose distribution delivered by UV processes.</description><identifier>ISSN: 0273-1223</identifier><identifier>ISBN: 1900222701</identifier><identifier>ISBN: 9781900222709</identifier><identifier>EISSN: 1996-9732</identifier><identifier>DOI: 10.2166/wst.2001.0681</identifier><identifier>PMID: 11443961</identifier><identifier>CODEN: WSTED4</identifier><language>eng</language><publisher>London: IWA</publisher><subject>Applied sciences ; Bacteria - radiation effects ; Bioreactors ; Computer simulation ; Disinfection ; Disinfection - methods ; Distribution ; Drinking water and swimming-pool water. Desalination ; Evaluation ; Exact sciences and technology ; Fractal models ; Fractals ; General purification processes ; Heterogeneity ; Irradiation ; Mathematical analysis ; Mathematical Computing ; Microorganisms ; Particle trajectories ; Patchiness ; Photometry - methods ; Pollution ; Spatial distribution ; Spatial heterogeneity ; Stochasticity ; Systems design ; Ultraviolet radiation ; Ultraviolet Rays ; Wastewaters ; Water Microbiology ; Water Purification - methods ; Water Purification - standards ; Water Supply ; Water treatment and pollution</subject><ispartof>Water science and technology, 2001-01, Vol.43 (11), p.181-188</ispartof><rights>2001 INIST-CNRS</rights><rights>Copyright IWA Publishing Jun 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-4050f6e177b1a2a67eb1980046e3d79049d47392128ab5e14b6d922da3251fe53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1018967$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11443961$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Lesouef, A</contributor><contributor>Haas, C</contributor><contributor>Watanabe, Y</contributor><contributor>ven der Vlies, AW</contributor><contributor>Nagle, PT (eds)</contributor><contributor>House, M</contributor><contributor>Gilbert, J</contributor><contributor>Grabow, WOK</contributor><contributor>Nielsen, J</contributor><contributor>Wanner, J</contributor><contributor>Milburn, A</contributor><contributor>Villesot, D</contributor><contributor>Purdon, CD</contributor><creatorcontrib>LIN, L-S</creatorcontrib><creatorcontrib>BIATCHLEY, E. R</creatorcontrib><title>UV dose distribution characterization using fractal concepts for system performance evaluation</title><title>Water science and technology</title><addtitle>Water Sci Technol</addtitle><description>This paper presents a mathematical model for estimating the UV dose distribution delivered by continuous-flow UV disinfection processes. The model adopts fractal concepts and a stochastic method to simulate microorganism (particle) trajectories through the irradiation zone of an open-channel UV system. The irregularity of particle trajectories attributable to random movements was characterized by fractal dimension. In turn, trajectory-specific doses were calculated by integrating UV intensity over travel time. Results of these simulations indicated that radiation intensities along the trajectories could be highly variable. Therefore, microorganisms are expected to receive a broad range of radiation doses as a result of variations in radiation intensity along their trajectories and spatial heterogeneity in the radiation intensity field. This supports previous assertions that the conventional averaged-dose approach will result in substantial deviations between predicted and actual system performance. Implications of the results in terms of treatment efficiency and system design are discussed. The presented approach is found to be useful as a tool for rapid estimation of the dose distribution delivered by UV processes.</description><subject>Applied sciences</subject><subject>Bacteria - radiation effects</subject><subject>Bioreactors</subject><subject>Computer simulation</subject><subject>Disinfection</subject><subject>Disinfection - methods</subject><subject>Distribution</subject><subject>Drinking water and swimming-pool water. Desalination</subject><subject>Evaluation</subject><subject>Exact sciences and technology</subject><subject>Fractal models</subject><subject>Fractals</subject><subject>General purification processes</subject><subject>Heterogeneity</subject><subject>Irradiation</subject><subject>Mathematical analysis</subject><subject>Mathematical Computing</subject><subject>Microorganisms</subject><subject>Particle trajectories</subject><subject>Patchiness</subject><subject>Photometry - methods</subject><subject>Pollution</subject><subject>Spatial distribution</subject><subject>Spatial heterogeneity</subject><subject>Stochasticity</subject><subject>Systems design</subject><subject>Ultraviolet radiation</subject><subject>Ultraviolet Rays</subject><subject>Wastewaters</subject><subject>Water Microbiology</subject><subject>Water Purification - methods</subject><subject>Water Purification - standards</subject><subject>Water Supply</subject><subject>Water treatment and pollution</subject><issn>0273-1223</issn><issn>1996-9732</issn><isbn>1900222701</isbn><isbn>9781900222709</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqN0ctrFTEUBvCgFXtbXbqVgOJuruecvCZLKb6g0E3r0pDJZHTKPK7JjFL_enPbC0o3dRVy8stHyMfYC4QtodZvf-VlSwC4BV3jI7ZBa3VljaDH7AQtABEZwCO2ATKiQiJxzE5yvgYAIyQ8ZceIUgqrccO-Xn3h7Zwjb_u8pL5Zl36eePjukw9LTP1vfztYcz99491-6Ace5inE3ZJ5Nyeeb_ISR76LqexGX054_OmH9fbiM_ak80OOzw_rKbv68P7y7FN1fvHx89m78yqUdyyVBAWdjmhMg568NrFBWwNIHUVrLEjbSiMsIdW-URFlo1tL1HpBCruoxCl7c5e7S_OPNebFjX0OcRj8FOc1OwPWSmvgQUjWKqqV-g9oalkb8yDEGo0kRQW-ugev5zVN5VscWimEwhp0UdWdCmnOOcXO7VI_-nTjENy-flfqd_v63b7-4l8eUtdmjO1ffai4gNcH4HPwQ-lwCn3-JxVrq434A-TDtOU</recordid><startdate>20010101</startdate><enddate>20010101</enddate><creator>LIN, L-S</creator><creator>BIATCHLEY, E. R</creator><general>IWA</general><general>IWA Publishing</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7TV</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>7X8</scope></search><sort><creationdate>20010101</creationdate><title>UV dose distribution characterization using fractal concepts for system performance evaluation</title><author>LIN, L-S ; BIATCHLEY, E. R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-4050f6e177b1a2a67eb1980046e3d79049d47392128ab5e14b6d922da3251fe53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Bacteria - radiation effects</topic><topic>Bioreactors</topic><topic>Computer simulation</topic><topic>Disinfection</topic><topic>Disinfection - methods</topic><topic>Distribution</topic><topic>Drinking water and swimming-pool water. Desalination</topic><topic>Evaluation</topic><topic>Exact sciences and technology</topic><topic>Fractal models</topic><topic>Fractals</topic><topic>General purification processes</topic><topic>Heterogeneity</topic><topic>Irradiation</topic><topic>Mathematical analysis</topic><topic>Mathematical Computing</topic><topic>Microorganisms</topic><topic>Particle trajectories</topic><topic>Patchiness</topic><topic>Photometry - methods</topic><topic>Pollution</topic><topic>Spatial distribution</topic><topic>Spatial heterogeneity</topic><topic>Stochasticity</topic><topic>Systems design</topic><topic>Ultraviolet radiation</topic><topic>Ultraviolet Rays</topic><topic>Wastewaters</topic><topic>Water Microbiology</topic><topic>Water Purification - methods</topic><topic>Water Purification - standards</topic><topic>Water Supply</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LIN, L-S</creatorcontrib><creatorcontrib>BIATCHLEY, E. R</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Pollution Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Water science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LIN, L-S</au><au>BIATCHLEY, E. R</au><au>Lesouef, A</au><au>Haas, C</au><au>Watanabe, Y</au><au>ven der Vlies, AW</au><au>Nagle, PT (eds)</au><au>House, M</au><au>Gilbert, J</au><au>Grabow, WOK</au><au>Nielsen, J</au><au>Wanner, J</au><au>Milburn, A</au><au>Villesot, D</au><au>Purdon, CD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>UV dose distribution characterization using fractal concepts for system performance evaluation</atitle><jtitle>Water science and technology</jtitle><addtitle>Water Sci Technol</addtitle><date>2001-01-01</date><risdate>2001</risdate><volume>43</volume><issue>11</issue><spage>181</spage><epage>188</epage><pages>181-188</pages><issn>0273-1223</issn><eissn>1996-9732</eissn><isbn>1900222701</isbn><isbn>9781900222709</isbn><coden>WSTED4</coden><abstract>This paper presents a mathematical model for estimating the UV dose distribution delivered by continuous-flow UV disinfection processes. The model adopts fractal concepts and a stochastic method to simulate microorganism (particle) trajectories through the irradiation zone of an open-channel UV system. The irregularity of particle trajectories attributable to random movements was characterized by fractal dimension. In turn, trajectory-specific doses were calculated by integrating UV intensity over travel time. Results of these simulations indicated that radiation intensities along the trajectories could be highly variable. Therefore, microorganisms are expected to receive a broad range of radiation doses as a result of variations in radiation intensity along their trajectories and spatial heterogeneity in the radiation intensity field. This supports previous assertions that the conventional averaged-dose approach will result in substantial deviations between predicted and actual system performance. Implications of the results in terms of treatment efficiency and system design are discussed. The presented approach is found to be useful as a tool for rapid estimation of the dose distribution delivered by UV processes.</abstract><cop>London</cop><pub>IWA</pub><pmid>11443961</pmid><doi>10.2166/wst.2001.0681</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0273-1223
ispartof Water science and technology, 2001-01, Vol.43 (11), p.181-188
issn 0273-1223
1996-9732
language eng
recordid cdi_proquest_miscellaneous_70994970
source MEDLINE; EZB-FREE-00999 freely available EZB journals
subjects Applied sciences
Bacteria - radiation effects
Bioreactors
Computer simulation
Disinfection
Disinfection - methods
Distribution
Drinking water and swimming-pool water. Desalination
Evaluation
Exact sciences and technology
Fractal models
Fractals
General purification processes
Heterogeneity
Irradiation
Mathematical analysis
Mathematical Computing
Microorganisms
Particle trajectories
Patchiness
Photometry - methods
Pollution
Spatial distribution
Spatial heterogeneity
Stochasticity
Systems design
Ultraviolet radiation
Ultraviolet Rays
Wastewaters
Water Microbiology
Water Purification - methods
Water Purification - standards
Water Supply
Water treatment and pollution
title UV dose distribution characterization using fractal concepts for system performance evaluation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A23%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=UV%20dose%20distribution%20characterization%20using%20fractal%20concepts%20for%20system%20performance%20evaluation&rft.jtitle=Water%20science%20and%20technology&rft.au=LIN,%20L-S&rft.date=2001-01-01&rft.volume=43&rft.issue=11&rft.spage=181&rft.epage=188&rft.pages=181-188&rft.issn=0273-1223&rft.eissn=1996-9732&rft.isbn=1900222701&rft.isbn_list=9781900222709&rft.coden=WSTED4&rft_id=info:doi/10.2166/wst.2001.0681&rft_dat=%3Cproquest_cross%3E29952855%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1943351806&rft_id=info:pmid/11443961&rfr_iscdi=true