God's organism? The chick as a model system for memory studies
The young chick is a powerful model system in which to study the biochemical and morphological processes underlying memory formation. Training chicks on a one trial passive avoidance task results in a molecular cascade in a specific brain region, the intermediate medial hyperstriatum ventrale. This...
Gespeichert in:
Veröffentlicht in: | Learning & memory (Cold Spring Harbor, N.Y.) N.Y.), 2000-01, Vol.7 (1), p.1-17 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Learning & memory (Cold Spring Harbor, N.Y.) |
container_volume | 7 |
creator | Rose, S P |
description | The young chick is a powerful model system in which to study the biochemical and morphological processes underlying memory formation. Training chicks on a one trial passive avoidance task results in a molecular cascade in a specific brain region, the intermediate medial hyperstriatum ventrale. This cascade is initiated by glutamate release and engages a series of synaptic transients including increased calcium flux, up-regulation of NMDA-glutamate receptors, membrane protein phosphorylations, and the retrograde messenger NO. Expression of immediate early genes c-fos and c-jun precedes the synthesis, glycosylation, and redistribution, >4 hr downstream, of a number of synaptic membrane proteins, notably NCAM and L1. Other membrane proteins required in the early phase of memory formation include the amyloid precursor protein (APP) and apolipoprotein E. There are concomitant increases in dendritic spine number and changes in synaptic structure. Nonsynaptic factors, including corticosterone and BDNF, can modulate retention of the avoidance response, enhancing the salience of otherwise weakly retained memory. These results are discussed in relation to general concepts of memory formation and the spatio-temporal distribution of the putative memory trace. |
doi_str_mv | 10.1101/lm.7.1.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70988317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17544687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-a1ca048eb173de255e4b996c214faf94ec5bd817d05d59b6cd8313aad887562e3</originalsourceid><addsrcrecordid>eNqF0LFOwzAQBmALgWgpSDwB8gQsCb7Ejp0FhCooSJVYymw59oUG4qbYydC3J6gd2JjupPvuH35CLoGlAAzuWp_KFFI4IlMQvEwEV-J43JnMEiZYNiFnMX4yxqTkcEom44EVolRTcr_o3E2kXfgwmyb6B7paI7Xrxn5RE6mhvnPY0riLPXpad4F69F3Y0dgPrsF4Tk5q00a8OMwZeX9-Ws1fkuXb4nX-uEwsB9YnBqxhXGEFMneYCYG8KsvCZsBrU5ccraicAumYcKKsCutUDrkxTikpigzzGbne525D9z1g7LVvosW2NRvshqglK9X4Iv-FIAXnhfqFt3toQxdjwFpvQ-NN2Glg-rdU3XotNWgY6dUhc6g8uj9w32L-A0obcKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17544687</pqid></control><display><type>article</type><title>God's organism? The chick as a model system for memory studies</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Rose, S P</creator><creatorcontrib>Rose, S P</creatorcontrib><description>The young chick is a powerful model system in which to study the biochemical and morphological processes underlying memory formation. Training chicks on a one trial passive avoidance task results in a molecular cascade in a specific brain region, the intermediate medial hyperstriatum ventrale. This cascade is initiated by glutamate release and engages a series of synaptic transients including increased calcium flux, up-regulation of NMDA-glutamate receptors, membrane protein phosphorylations, and the retrograde messenger NO. Expression of immediate early genes c-fos and c-jun precedes the synthesis, glycosylation, and redistribution, >4 hr downstream, of a number of synaptic membrane proteins, notably NCAM and L1. Other membrane proteins required in the early phase of memory formation include the amyloid precursor protein (APP) and apolipoprotein E. There are concomitant increases in dendritic spine number and changes in synaptic structure. Nonsynaptic factors, including corticosterone and BDNF, can modulate retention of the avoidance response, enhancing the salience of otherwise weakly retained memory. These results are discussed in relation to general concepts of memory formation and the spatio-temporal distribution of the putative memory trace.</description><identifier>ISSN: 1072-0502</identifier><identifier>EISSN: 1549-5485</identifier><identifier>DOI: 10.1101/lm.7.1.1</identifier><identifier>PMID: 10706598</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Avoidance Learning - physiology ; Calcium - metabolism ; Chickens - physiology ; Glutamic Acid - metabolism ; Membrane Proteins - metabolism ; Memory - physiology ; Models, Neurological ; Nitric Oxide - metabolism ; Phosphorylation ; Prosencephalon - metabolism ; Receptors, N-Methyl-D-Aspartate - metabolism ; Synapses - metabolism</subject><ispartof>Learning & memory (Cold Spring Harbor, N.Y.), 2000-01, Vol.7 (1), p.1-17</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-a1ca048eb173de255e4b996c214faf94ec5bd817d05d59b6cd8313aad887562e3</citedby><cites>FETCH-LOGICAL-c410t-a1ca048eb173de255e4b996c214faf94ec5bd817d05d59b6cd8313aad887562e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10706598$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rose, S P</creatorcontrib><title>God's organism? The chick as a model system for memory studies</title><title>Learning & memory (Cold Spring Harbor, N.Y.)</title><addtitle>Learn Mem</addtitle><description>The young chick is a powerful model system in which to study the biochemical and morphological processes underlying memory formation. Training chicks on a one trial passive avoidance task results in a molecular cascade in a specific brain region, the intermediate medial hyperstriatum ventrale. This cascade is initiated by glutamate release and engages a series of synaptic transients including increased calcium flux, up-regulation of NMDA-glutamate receptors, membrane protein phosphorylations, and the retrograde messenger NO. Expression of immediate early genes c-fos and c-jun precedes the synthesis, glycosylation, and redistribution, >4 hr downstream, of a number of synaptic membrane proteins, notably NCAM and L1. Other membrane proteins required in the early phase of memory formation include the amyloid precursor protein (APP) and apolipoprotein E. There are concomitant increases in dendritic spine number and changes in synaptic structure. Nonsynaptic factors, including corticosterone and BDNF, can modulate retention of the avoidance response, enhancing the salience of otherwise weakly retained memory. These results are discussed in relation to general concepts of memory formation and the spatio-temporal distribution of the putative memory trace.</description><subject>Animals</subject><subject>Avoidance Learning - physiology</subject><subject>Calcium - metabolism</subject><subject>Chickens - physiology</subject><subject>Glutamic Acid - metabolism</subject><subject>Membrane Proteins - metabolism</subject><subject>Memory - physiology</subject><subject>Models, Neurological</subject><subject>Nitric Oxide - metabolism</subject><subject>Phosphorylation</subject><subject>Prosencephalon - metabolism</subject><subject>Receptors, N-Methyl-D-Aspartate - metabolism</subject><subject>Synapses - metabolism</subject><issn>1072-0502</issn><issn>1549-5485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0LFOwzAQBmALgWgpSDwB8gQsCb7Ejp0FhCooSJVYymw59oUG4qbYydC3J6gd2JjupPvuH35CLoGlAAzuWp_KFFI4IlMQvEwEV-J43JnMEiZYNiFnMX4yxqTkcEom44EVolRTcr_o3E2kXfgwmyb6B7paI7Xrxn5RE6mhvnPY0riLPXpad4F69F3Y0dgPrsF4Tk5q00a8OMwZeX9-Ws1fkuXb4nX-uEwsB9YnBqxhXGEFMneYCYG8KsvCZsBrU5ccraicAumYcKKsCutUDrkxTikpigzzGbne525D9z1g7LVvosW2NRvshqglK9X4Iv-FIAXnhfqFt3toQxdjwFpvQ-NN2Glg-rdU3XotNWgY6dUhc6g8uj9w32L-A0obcKw</recordid><startdate>200001</startdate><enddate>200001</enddate><creator>Rose, S P</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>200001</creationdate><title>God's organism? The chick as a model system for memory studies</title><author>Rose, S P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-a1ca048eb173de255e4b996c214faf94ec5bd817d05d59b6cd8313aad887562e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Animals</topic><topic>Avoidance Learning - physiology</topic><topic>Calcium - metabolism</topic><topic>Chickens - physiology</topic><topic>Glutamic Acid - metabolism</topic><topic>Membrane Proteins - metabolism</topic><topic>Memory - physiology</topic><topic>Models, Neurological</topic><topic>Nitric Oxide - metabolism</topic><topic>Phosphorylation</topic><topic>Prosencephalon - metabolism</topic><topic>Receptors, N-Methyl-D-Aspartate - metabolism</topic><topic>Synapses - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rose, S P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Learning & memory (Cold Spring Harbor, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rose, S P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>God's organism? The chick as a model system for memory studies</atitle><jtitle>Learning & memory (Cold Spring Harbor, N.Y.)</jtitle><addtitle>Learn Mem</addtitle><date>2000-01</date><risdate>2000</risdate><volume>7</volume><issue>1</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>1072-0502</issn><eissn>1549-5485</eissn><abstract>The young chick is a powerful model system in which to study the biochemical and morphological processes underlying memory formation. Training chicks on a one trial passive avoidance task results in a molecular cascade in a specific brain region, the intermediate medial hyperstriatum ventrale. This cascade is initiated by glutamate release and engages a series of synaptic transients including increased calcium flux, up-regulation of NMDA-glutamate receptors, membrane protein phosphorylations, and the retrograde messenger NO. Expression of immediate early genes c-fos and c-jun precedes the synthesis, glycosylation, and redistribution, >4 hr downstream, of a number of synaptic membrane proteins, notably NCAM and L1. Other membrane proteins required in the early phase of memory formation include the amyloid precursor protein (APP) and apolipoprotein E. There are concomitant increases in dendritic spine number and changes in synaptic structure. Nonsynaptic factors, including corticosterone and BDNF, can modulate retention of the avoidance response, enhancing the salience of otherwise weakly retained memory. These results are discussed in relation to general concepts of memory formation and the spatio-temporal distribution of the putative memory trace.</abstract><cop>United States</cop><pmid>10706598</pmid><doi>10.1101/lm.7.1.1</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-0502 |
ispartof | Learning & memory (Cold Spring Harbor, N.Y.), 2000-01, Vol.7 (1), p.1-17 |
issn | 1072-0502 1549-5485 |
language | eng |
recordid | cdi_proquest_miscellaneous_70988317 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animals Avoidance Learning - physiology Calcium - metabolism Chickens - physiology Glutamic Acid - metabolism Membrane Proteins - metabolism Memory - physiology Models, Neurological Nitric Oxide - metabolism Phosphorylation Prosencephalon - metabolism Receptors, N-Methyl-D-Aspartate - metabolism Synapses - metabolism |
title | God's organism? The chick as a model system for memory studies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A33%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=God's%20organism?%20The%20chick%20as%20a%20model%20system%20for%20memory%20studies&rft.jtitle=Learning%20&%20memory%20(Cold%20Spring%20Harbor,%20N.Y.)&rft.au=Rose,%20S%20P&rft.date=2000-01&rft.volume=7&rft.issue=1&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=1072-0502&rft.eissn=1549-5485&rft_id=info:doi/10.1101/lm.7.1.1&rft_dat=%3Cproquest_cross%3E17544687%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17544687&rft_id=info:pmid/10706598&rfr_iscdi=true |