God's organism? The chick as a model system for memory studies

The young chick is a powerful model system in which to study the biochemical and morphological processes underlying memory formation. Training chicks on a one trial passive avoidance task results in a molecular cascade in a specific brain region, the intermediate medial hyperstriatum ventrale. This...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Learning & memory (Cold Spring Harbor, N.Y.) N.Y.), 2000-01, Vol.7 (1), p.1-17
1. Verfasser: Rose, S P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue 1
container_start_page 1
container_title Learning & memory (Cold Spring Harbor, N.Y.)
container_volume 7
creator Rose, S P
description The young chick is a powerful model system in which to study the biochemical and morphological processes underlying memory formation. Training chicks on a one trial passive avoidance task results in a molecular cascade in a specific brain region, the intermediate medial hyperstriatum ventrale. This cascade is initiated by glutamate release and engages a series of synaptic transients including increased calcium flux, up-regulation of NMDA-glutamate receptors, membrane protein phosphorylations, and the retrograde messenger NO. Expression of immediate early genes c-fos and c-jun precedes the synthesis, glycosylation, and redistribution, >4 hr downstream, of a number of synaptic membrane proteins, notably NCAM and L1. Other membrane proteins required in the early phase of memory formation include the amyloid precursor protein (APP) and apolipoprotein E. There are concomitant increases in dendritic spine number and changes in synaptic structure. Nonsynaptic factors, including corticosterone and BDNF, can modulate retention of the avoidance response, enhancing the salience of otherwise weakly retained memory. These results are discussed in relation to general concepts of memory formation and the spatio-temporal distribution of the putative memory trace.
doi_str_mv 10.1101/lm.7.1.1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70988317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17544687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-a1ca048eb173de255e4b996c214faf94ec5bd817d05d59b6cd8313aad887562e3</originalsourceid><addsrcrecordid>eNqF0LFOwzAQBmALgWgpSDwB8gQsCb7Ejp0FhCooSJVYymw59oUG4qbYydC3J6gd2JjupPvuH35CLoGlAAzuWp_KFFI4IlMQvEwEV-J43JnMEiZYNiFnMX4yxqTkcEom44EVolRTcr_o3E2kXfgwmyb6B7paI7Xrxn5RE6mhvnPY0riLPXpad4F69F3Y0dgPrsF4Tk5q00a8OMwZeX9-Ws1fkuXb4nX-uEwsB9YnBqxhXGEFMneYCYG8KsvCZsBrU5ccraicAumYcKKsCutUDrkxTikpigzzGbne525D9z1g7LVvosW2NRvshqglK9X4Iv-FIAXnhfqFt3toQxdjwFpvQ-NN2Glg-rdU3XotNWgY6dUhc6g8uj9w32L-A0obcKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17544687</pqid></control><display><type>article</type><title>God's organism? The chick as a model system for memory studies</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Rose, S P</creator><creatorcontrib>Rose, S P</creatorcontrib><description>The young chick is a powerful model system in which to study the biochemical and morphological processes underlying memory formation. Training chicks on a one trial passive avoidance task results in a molecular cascade in a specific brain region, the intermediate medial hyperstriatum ventrale. This cascade is initiated by glutamate release and engages a series of synaptic transients including increased calcium flux, up-regulation of NMDA-glutamate receptors, membrane protein phosphorylations, and the retrograde messenger NO. Expression of immediate early genes c-fos and c-jun precedes the synthesis, glycosylation, and redistribution, &gt;4 hr downstream, of a number of synaptic membrane proteins, notably NCAM and L1. Other membrane proteins required in the early phase of memory formation include the amyloid precursor protein (APP) and apolipoprotein E. There are concomitant increases in dendritic spine number and changes in synaptic structure. Nonsynaptic factors, including corticosterone and BDNF, can modulate retention of the avoidance response, enhancing the salience of otherwise weakly retained memory. These results are discussed in relation to general concepts of memory formation and the spatio-temporal distribution of the putative memory trace.</description><identifier>ISSN: 1072-0502</identifier><identifier>EISSN: 1549-5485</identifier><identifier>DOI: 10.1101/lm.7.1.1</identifier><identifier>PMID: 10706598</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Avoidance Learning - physiology ; Calcium - metabolism ; Chickens - physiology ; Glutamic Acid - metabolism ; Membrane Proteins - metabolism ; Memory - physiology ; Models, Neurological ; Nitric Oxide - metabolism ; Phosphorylation ; Prosencephalon - metabolism ; Receptors, N-Methyl-D-Aspartate - metabolism ; Synapses - metabolism</subject><ispartof>Learning &amp; memory (Cold Spring Harbor, N.Y.), 2000-01, Vol.7 (1), p.1-17</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-a1ca048eb173de255e4b996c214faf94ec5bd817d05d59b6cd8313aad887562e3</citedby><cites>FETCH-LOGICAL-c410t-a1ca048eb173de255e4b996c214faf94ec5bd817d05d59b6cd8313aad887562e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10706598$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rose, S P</creatorcontrib><title>God's organism? The chick as a model system for memory studies</title><title>Learning &amp; memory (Cold Spring Harbor, N.Y.)</title><addtitle>Learn Mem</addtitle><description>The young chick is a powerful model system in which to study the biochemical and morphological processes underlying memory formation. Training chicks on a one trial passive avoidance task results in a molecular cascade in a specific brain region, the intermediate medial hyperstriatum ventrale. This cascade is initiated by glutamate release and engages a series of synaptic transients including increased calcium flux, up-regulation of NMDA-glutamate receptors, membrane protein phosphorylations, and the retrograde messenger NO. Expression of immediate early genes c-fos and c-jun precedes the synthesis, glycosylation, and redistribution, &gt;4 hr downstream, of a number of synaptic membrane proteins, notably NCAM and L1. Other membrane proteins required in the early phase of memory formation include the amyloid precursor protein (APP) and apolipoprotein E. There are concomitant increases in dendritic spine number and changes in synaptic structure. Nonsynaptic factors, including corticosterone and BDNF, can modulate retention of the avoidance response, enhancing the salience of otherwise weakly retained memory. These results are discussed in relation to general concepts of memory formation and the spatio-temporal distribution of the putative memory trace.</description><subject>Animals</subject><subject>Avoidance Learning - physiology</subject><subject>Calcium - metabolism</subject><subject>Chickens - physiology</subject><subject>Glutamic Acid - metabolism</subject><subject>Membrane Proteins - metabolism</subject><subject>Memory - physiology</subject><subject>Models, Neurological</subject><subject>Nitric Oxide - metabolism</subject><subject>Phosphorylation</subject><subject>Prosencephalon - metabolism</subject><subject>Receptors, N-Methyl-D-Aspartate - metabolism</subject><subject>Synapses - metabolism</subject><issn>1072-0502</issn><issn>1549-5485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0LFOwzAQBmALgWgpSDwB8gQsCb7Ejp0FhCooSJVYymw59oUG4qbYydC3J6gd2JjupPvuH35CLoGlAAzuWp_KFFI4IlMQvEwEV-J43JnMEiZYNiFnMX4yxqTkcEom44EVolRTcr_o3E2kXfgwmyb6B7paI7Xrxn5RE6mhvnPY0riLPXpad4F69F3Y0dgPrsF4Tk5q00a8OMwZeX9-Ws1fkuXb4nX-uEwsB9YnBqxhXGEFMneYCYG8KsvCZsBrU5ccraicAumYcKKsCutUDrkxTikpigzzGbne525D9z1g7LVvosW2NRvshqglK9X4Iv-FIAXnhfqFt3toQxdjwFpvQ-NN2Glg-rdU3XotNWgY6dUhc6g8uj9w32L-A0obcKw</recordid><startdate>200001</startdate><enddate>200001</enddate><creator>Rose, S P</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>200001</creationdate><title>God's organism? The chick as a model system for memory studies</title><author>Rose, S P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-a1ca048eb173de255e4b996c214faf94ec5bd817d05d59b6cd8313aad887562e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Animals</topic><topic>Avoidance Learning - physiology</topic><topic>Calcium - metabolism</topic><topic>Chickens - physiology</topic><topic>Glutamic Acid - metabolism</topic><topic>Membrane Proteins - metabolism</topic><topic>Memory - physiology</topic><topic>Models, Neurological</topic><topic>Nitric Oxide - metabolism</topic><topic>Phosphorylation</topic><topic>Prosencephalon - metabolism</topic><topic>Receptors, N-Methyl-D-Aspartate - metabolism</topic><topic>Synapses - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rose, S P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Learning &amp; memory (Cold Spring Harbor, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rose, S P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>God's organism? The chick as a model system for memory studies</atitle><jtitle>Learning &amp; memory (Cold Spring Harbor, N.Y.)</jtitle><addtitle>Learn Mem</addtitle><date>2000-01</date><risdate>2000</risdate><volume>7</volume><issue>1</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>1072-0502</issn><eissn>1549-5485</eissn><abstract>The young chick is a powerful model system in which to study the biochemical and morphological processes underlying memory formation. Training chicks on a one trial passive avoidance task results in a molecular cascade in a specific brain region, the intermediate medial hyperstriatum ventrale. This cascade is initiated by glutamate release and engages a series of synaptic transients including increased calcium flux, up-regulation of NMDA-glutamate receptors, membrane protein phosphorylations, and the retrograde messenger NO. Expression of immediate early genes c-fos and c-jun precedes the synthesis, glycosylation, and redistribution, &gt;4 hr downstream, of a number of synaptic membrane proteins, notably NCAM and L1. Other membrane proteins required in the early phase of memory formation include the amyloid precursor protein (APP) and apolipoprotein E. There are concomitant increases in dendritic spine number and changes in synaptic structure. Nonsynaptic factors, including corticosterone and BDNF, can modulate retention of the avoidance response, enhancing the salience of otherwise weakly retained memory. These results are discussed in relation to general concepts of memory formation and the spatio-temporal distribution of the putative memory trace.</abstract><cop>United States</cop><pmid>10706598</pmid><doi>10.1101/lm.7.1.1</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1072-0502
ispartof Learning & memory (Cold Spring Harbor, N.Y.), 2000-01, Vol.7 (1), p.1-17
issn 1072-0502
1549-5485
language eng
recordid cdi_proquest_miscellaneous_70988317
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animals
Avoidance Learning - physiology
Calcium - metabolism
Chickens - physiology
Glutamic Acid - metabolism
Membrane Proteins - metabolism
Memory - physiology
Models, Neurological
Nitric Oxide - metabolism
Phosphorylation
Prosencephalon - metabolism
Receptors, N-Methyl-D-Aspartate - metabolism
Synapses - metabolism
title God's organism? The chick as a model system for memory studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A33%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=God's%20organism?%20The%20chick%20as%20a%20model%20system%20for%20memory%20studies&rft.jtitle=Learning%20&%20memory%20(Cold%20Spring%20Harbor,%20N.Y.)&rft.au=Rose,%20S%20P&rft.date=2000-01&rft.volume=7&rft.issue=1&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=1072-0502&rft.eissn=1549-5485&rft_id=info:doi/10.1101/lm.7.1.1&rft_dat=%3Cproquest_cross%3E17544687%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17544687&rft_id=info:pmid/10706598&rfr_iscdi=true