Inhibition of angiogenesis by adenovirus-mediated sFlt-1 expression in a rat model of corneal neovascularization

Pathological angiogenesis, or the production of new capillary vessels from preexisting vasculature, within the eye is a serious event that often leads to blindness. Upregulation of vascular endothelial growth factor (VEGF) has been linked to neovascularization in the eye, suggesting that it could be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human gene therapy 2001-07, Vol.12 (10), p.1299-1310
Hauptverfasser: LAI, Chooi-May, BRANKOV, Meliha, ZAKNICH, Tammy, LAI, Yvonne K.-Y, SHEN, Wei-Yong, CONSTABLE, Ian J, KOVESDI, Imre, RAKOCZY, Piroska E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1310
container_issue 10
container_start_page 1299
container_title Human gene therapy
container_volume 12
creator LAI, Chooi-May
BRANKOV, Meliha
ZAKNICH, Tammy
LAI, Yvonne K.-Y
SHEN, Wei-Yong
CONSTABLE, Ian J
KOVESDI, Imre
RAKOCZY, Piroska E
description Pathological angiogenesis, or the production of new capillary vessels from preexisting vasculature, within the eye is a serious event that often leads to blindness. Upregulation of vascular endothelial growth factor (VEGF) has been linked to neovascularization in the eye, suggesting that it could be a suitable target to inhibit angiogenic changes. This work investigated whether the presence of a proven antiangiogenic factor, the soluble variant of the VEGF receptor, sFlt-1, in the anterior chamber is sufficient to inhibit new vessel formation in the cornea in an animal model of corneal neovascularization. A recombinant adenovirus vector that can mediate efficient in vivo gene transfer and expression in ocular cells was selected as a delivery agent. We have shown that after the injection of Ad.betagal into the anterior chamber of normal and cauterized rat eyes, corneal endothelial cells and cells of the trabecular meshwork were efficiently transduced and that beta-galactosidase (beta-Gal) expression was maintained up to 10 days postinjection. Cauterization significantly increased the amount of immunoreactive VEGF in vehicle- or Ad.null-injected animals (t test, p < 0.001 and p < 0.001, respectively). However, when cauterization was combined with Ad.sflt injection there was no statistically significant increase in the amount of immunoreactive VEGF (p = 0.12). The injection of Ad.sflt into the anterior chamber slowed or inhibited VEGF-induced angiogenic changes. After cauterization, 100% of uninjected and vehicle-injected and 82% of Ad.null-injected animals developed moderate to severe corneal angiogenesis in contrast to 18% of Ad.sflt-injected animals. These in vivo results suggest that the transient presence of antiangiogenic agents in the anterior chamber can be successfully used to inhibit the development of corneal angiogenesis.
doi_str_mv 10.1089/104303401750270959
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70985769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70985769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-bef5be39d7c17e746fcf4c684e90cccc2fce4c869e50f56fc28be888d80e5a313</originalsourceid><addsrcrecordid>eNqFkUFPAyEUhInR2Fr9Ax4MF72twgILezSNVZMmXvS8YdlHxWyhwq6x_nppbOLBg1wg4Zt5LzMInVNyTYmqbyjhjDBOqBSklKQW9QGaUiFkIXlZHuZ3BopMlBN0ktIbIZSJSh6jCaWck6pkU7R59K-udYMLHgeLtV-5sAIPySXcbrHuwIcPF8dUrKFzeoAOp0U_FBTD5yZCSjuh81jjqAe8Dh30Ox8TogfdYw_hQycz9jq6L72bcoqOrO4TnO3vGXpZ3D3PH4rl0_3j_HZZGFaRoWjBihZY3UlDJUheWWO5qRSHmph8SmuAG1XVIIgV-bdULSilOkVAaEbZDF39-G5ieB8hDc3aJQN9r_NOY2pyXkrIqv4XpIpIWVGewfIHNDGkFME2m-jWOm4bSppdIc3fQrLoYu8-tjnBX8m-gQxc7oGck-5t1N649MvxPL1WjH0DlROU6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18077614</pqid></control><display><type>article</type><title>Inhibition of angiogenesis by adenovirus-mediated sFlt-1 expression in a rat model of corneal neovascularization</title><source>MEDLINE</source><source>Mary Ann Liebert Online</source><creator>LAI, Chooi-May ; BRANKOV, Meliha ; ZAKNICH, Tammy ; LAI, Yvonne K.-Y ; SHEN, Wei-Yong ; CONSTABLE, Ian J ; KOVESDI, Imre ; RAKOCZY, Piroska E</creator><creatorcontrib>LAI, Chooi-May ; BRANKOV, Meliha ; ZAKNICH, Tammy ; LAI, Yvonne K.-Y ; SHEN, Wei-Yong ; CONSTABLE, Ian J ; KOVESDI, Imre ; RAKOCZY, Piroska E</creatorcontrib><description>Pathological angiogenesis, or the production of new capillary vessels from preexisting vasculature, within the eye is a serious event that often leads to blindness. Upregulation of vascular endothelial growth factor (VEGF) has been linked to neovascularization in the eye, suggesting that it could be a suitable target to inhibit angiogenic changes. This work investigated whether the presence of a proven antiangiogenic factor, the soluble variant of the VEGF receptor, sFlt-1, in the anterior chamber is sufficient to inhibit new vessel formation in the cornea in an animal model of corneal neovascularization. A recombinant adenovirus vector that can mediate efficient in vivo gene transfer and expression in ocular cells was selected as a delivery agent. We have shown that after the injection of Ad.betagal into the anterior chamber of normal and cauterized rat eyes, corneal endothelial cells and cells of the trabecular meshwork were efficiently transduced and that beta-galactosidase (beta-Gal) expression was maintained up to 10 days postinjection. Cauterization significantly increased the amount of immunoreactive VEGF in vehicle- or Ad.null-injected animals (t test, p &lt; 0.001 and p &lt; 0.001, respectively). However, when cauterization was combined with Ad.sflt injection there was no statistically significant increase in the amount of immunoreactive VEGF (p = 0.12). The injection of Ad.sflt into the anterior chamber slowed or inhibited VEGF-induced angiogenic changes. After cauterization, 100% of uninjected and vehicle-injected and 82% of Ad.null-injected animals developed moderate to severe corneal angiogenesis in contrast to 18% of Ad.sflt-injected animals. These in vivo results suggest that the transient presence of antiangiogenic agents in the anterior chamber can be successfully used to inhibit the development of corneal angiogenesis.</description><identifier>ISSN: 1043-0342</identifier><identifier>EISSN: 1557-7422</identifier><identifier>DOI: 10.1089/104303401750270959</identifier><identifier>PMID: 11440623</identifier><identifier>CODEN: HGTHE3</identifier><language>eng</language><publisher>Larchmont, NY: Liebert</publisher><subject>Adenoviridae - genetics ; Adenovirus ; Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy ; Angiogenesis Inhibitors - pharmacology ; Animals ; Applied cell therapy and gene therapy ; beta-Galactosidase - metabolism ; Biological and medical sciences ; Biotechnology ; Blotting, Western ; Cell Line ; Cornea - blood supply ; Cornea - metabolism ; Corneal Neovascularization - therapy ; Endothelial Growth Factors - genetics ; Endothelium, Vascular - cytology ; Eye - metabolism ; Fundamental and applied biological sciences. Psychology ; Gene therapy ; Genetic Vectors ; Health. Pharmaceutical industry ; Humans ; Image Processing, Computer-Assisted ; Immunohistochemistry ; Industrial applications and implications. Economical aspects ; Lymphokines - genetics ; Medical sciences ; Neovascularization, Pathologic ; Nitrates - pharmacology ; Potassium Compounds - pharmacology ; Proto-Oncogene Proteins - biosynthesis ; Proto-Oncogene Proteins - genetics ; Rats ; Receptor Protein-Tyrosine Kinases - biosynthesis ; Receptor Protein-Tyrosine Kinases - genetics ; sFlt-1 protein ; Silver Nitrate - pharmacology ; Time Factors ; Transduction, Genetic ; Transfusions. Complications. Transfusion reactions. Cell and gene therapy ; Transgenes ; Umbilical Veins - cytology ; Up-Regulation ; Vascular Endothelial Growth Factor A ; Vascular Endothelial Growth Factor Receptor-1 ; Vascular endothelial growth factor receptors ; Vascular Endothelial Growth Factors</subject><ispartof>Human gene therapy, 2001-07, Vol.12 (10), p.1299-1310</ispartof><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-bef5be39d7c17e746fcf4c684e90cccc2fce4c869e50f56fc28be888d80e5a313</citedby><cites>FETCH-LOGICAL-c360t-bef5be39d7c17e746fcf4c684e90cccc2fce4c869e50f56fc28be888d80e5a313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3029,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14077983$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11440623$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>LAI, Chooi-May</creatorcontrib><creatorcontrib>BRANKOV, Meliha</creatorcontrib><creatorcontrib>ZAKNICH, Tammy</creatorcontrib><creatorcontrib>LAI, Yvonne K.-Y</creatorcontrib><creatorcontrib>SHEN, Wei-Yong</creatorcontrib><creatorcontrib>CONSTABLE, Ian J</creatorcontrib><creatorcontrib>KOVESDI, Imre</creatorcontrib><creatorcontrib>RAKOCZY, Piroska E</creatorcontrib><title>Inhibition of angiogenesis by adenovirus-mediated sFlt-1 expression in a rat model of corneal neovascularization</title><title>Human gene therapy</title><addtitle>Hum Gene Ther</addtitle><description>Pathological angiogenesis, or the production of new capillary vessels from preexisting vasculature, within the eye is a serious event that often leads to blindness. Upregulation of vascular endothelial growth factor (VEGF) has been linked to neovascularization in the eye, suggesting that it could be a suitable target to inhibit angiogenic changes. This work investigated whether the presence of a proven antiangiogenic factor, the soluble variant of the VEGF receptor, sFlt-1, in the anterior chamber is sufficient to inhibit new vessel formation in the cornea in an animal model of corneal neovascularization. A recombinant adenovirus vector that can mediate efficient in vivo gene transfer and expression in ocular cells was selected as a delivery agent. We have shown that after the injection of Ad.betagal into the anterior chamber of normal and cauterized rat eyes, corneal endothelial cells and cells of the trabecular meshwork were efficiently transduced and that beta-galactosidase (beta-Gal) expression was maintained up to 10 days postinjection. Cauterization significantly increased the amount of immunoreactive VEGF in vehicle- or Ad.null-injected animals (t test, p &lt; 0.001 and p &lt; 0.001, respectively). However, when cauterization was combined with Ad.sflt injection there was no statistically significant increase in the amount of immunoreactive VEGF (p = 0.12). The injection of Ad.sflt into the anterior chamber slowed or inhibited VEGF-induced angiogenic changes. After cauterization, 100% of uninjected and vehicle-injected and 82% of Ad.null-injected animals developed moderate to severe corneal angiogenesis in contrast to 18% of Ad.sflt-injected animals. These in vivo results suggest that the transient presence of antiangiogenic agents in the anterior chamber can be successfully used to inhibit the development of corneal angiogenesis.</description><subject>Adenoviridae - genetics</subject><subject>Adenovirus</subject><subject>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</subject><subject>Angiogenesis Inhibitors - pharmacology</subject><subject>Animals</subject><subject>Applied cell therapy and gene therapy</subject><subject>beta-Galactosidase - metabolism</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Blotting, Western</subject><subject>Cell Line</subject><subject>Cornea - blood supply</subject><subject>Cornea - metabolism</subject><subject>Corneal Neovascularization - therapy</subject><subject>Endothelial Growth Factors - genetics</subject><subject>Endothelium, Vascular - cytology</subject><subject>Eye - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene therapy</subject><subject>Genetic Vectors</subject><subject>Health. Pharmaceutical industry</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Immunohistochemistry</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Lymphokines - genetics</subject><subject>Medical sciences</subject><subject>Neovascularization, Pathologic</subject><subject>Nitrates - pharmacology</subject><subject>Potassium Compounds - pharmacology</subject><subject>Proto-Oncogene Proteins - biosynthesis</subject><subject>Proto-Oncogene Proteins - genetics</subject><subject>Rats</subject><subject>Receptor Protein-Tyrosine Kinases - biosynthesis</subject><subject>Receptor Protein-Tyrosine Kinases - genetics</subject><subject>sFlt-1 protein</subject><subject>Silver Nitrate - pharmacology</subject><subject>Time Factors</subject><subject>Transduction, Genetic</subject><subject>Transfusions. Complications. Transfusion reactions. Cell and gene therapy</subject><subject>Transgenes</subject><subject>Umbilical Veins - cytology</subject><subject>Up-Regulation</subject><subject>Vascular Endothelial Growth Factor A</subject><subject>Vascular Endothelial Growth Factor Receptor-1</subject><subject>Vascular endothelial growth factor receptors</subject><subject>Vascular Endothelial Growth Factors</subject><issn>1043-0342</issn><issn>1557-7422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFPAyEUhInR2Fr9Ax4MF72twgILezSNVZMmXvS8YdlHxWyhwq6x_nppbOLBg1wg4Zt5LzMInVNyTYmqbyjhjDBOqBSklKQW9QGaUiFkIXlZHuZ3BopMlBN0ktIbIZSJSh6jCaWck6pkU7R59K-udYMLHgeLtV-5sAIPySXcbrHuwIcPF8dUrKFzeoAOp0U_FBTD5yZCSjuh81jjqAe8Dh30Ox8TogfdYw_hQycz9jq6L72bcoqOrO4TnO3vGXpZ3D3PH4rl0_3j_HZZGFaRoWjBihZY3UlDJUheWWO5qRSHmph8SmuAG1XVIIgV-bdULSilOkVAaEbZDF39-G5ieB8hDc3aJQN9r_NOY2pyXkrIqv4XpIpIWVGewfIHNDGkFME2m-jWOm4bSppdIc3fQrLoYu8-tjnBX8m-gQxc7oGck-5t1N649MvxPL1WjH0DlROU6w</recordid><startdate>20010701</startdate><enddate>20010701</enddate><creator>LAI, Chooi-May</creator><creator>BRANKOV, Meliha</creator><creator>ZAKNICH, Tammy</creator><creator>LAI, Yvonne K.-Y</creator><creator>SHEN, Wei-Yong</creator><creator>CONSTABLE, Ian J</creator><creator>KOVESDI, Imre</creator><creator>RAKOCZY, Piroska E</creator><general>Liebert</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20010701</creationdate><title>Inhibition of angiogenesis by adenovirus-mediated sFlt-1 expression in a rat model of corneal neovascularization</title><author>LAI, Chooi-May ; BRANKOV, Meliha ; ZAKNICH, Tammy ; LAI, Yvonne K.-Y ; SHEN, Wei-Yong ; CONSTABLE, Ian J ; KOVESDI, Imre ; RAKOCZY, Piroska E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-bef5be39d7c17e746fcf4c684e90cccc2fce4c869e50f56fc28be888d80e5a313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Adenoviridae - genetics</topic><topic>Adenovirus</topic><topic>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</topic><topic>Angiogenesis Inhibitors - pharmacology</topic><topic>Animals</topic><topic>Applied cell therapy and gene therapy</topic><topic>beta-Galactosidase - metabolism</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Blotting, Western</topic><topic>Cell Line</topic><topic>Cornea - blood supply</topic><topic>Cornea - metabolism</topic><topic>Corneal Neovascularization - therapy</topic><topic>Endothelial Growth Factors - genetics</topic><topic>Endothelium, Vascular - cytology</topic><topic>Eye - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene therapy</topic><topic>Genetic Vectors</topic><topic>Health. Pharmaceutical industry</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Immunohistochemistry</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Lymphokines - genetics</topic><topic>Medical sciences</topic><topic>Neovascularization, Pathologic</topic><topic>Nitrates - pharmacology</topic><topic>Potassium Compounds - pharmacology</topic><topic>Proto-Oncogene Proteins - biosynthesis</topic><topic>Proto-Oncogene Proteins - genetics</topic><topic>Rats</topic><topic>Receptor Protein-Tyrosine Kinases - biosynthesis</topic><topic>Receptor Protein-Tyrosine Kinases - genetics</topic><topic>sFlt-1 protein</topic><topic>Silver Nitrate - pharmacology</topic><topic>Time Factors</topic><topic>Transduction, Genetic</topic><topic>Transfusions. Complications. Transfusion reactions. Cell and gene therapy</topic><topic>Transgenes</topic><topic>Umbilical Veins - cytology</topic><topic>Up-Regulation</topic><topic>Vascular Endothelial Growth Factor A</topic><topic>Vascular Endothelial Growth Factor Receptor-1</topic><topic>Vascular endothelial growth factor receptors</topic><topic>Vascular Endothelial Growth Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LAI, Chooi-May</creatorcontrib><creatorcontrib>BRANKOV, Meliha</creatorcontrib><creatorcontrib>ZAKNICH, Tammy</creatorcontrib><creatorcontrib>LAI, Yvonne K.-Y</creatorcontrib><creatorcontrib>SHEN, Wei-Yong</creatorcontrib><creatorcontrib>CONSTABLE, Ian J</creatorcontrib><creatorcontrib>KOVESDI, Imre</creatorcontrib><creatorcontrib>RAKOCZY, Piroska E</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Human gene therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LAI, Chooi-May</au><au>BRANKOV, Meliha</au><au>ZAKNICH, Tammy</au><au>LAI, Yvonne K.-Y</au><au>SHEN, Wei-Yong</au><au>CONSTABLE, Ian J</au><au>KOVESDI, Imre</au><au>RAKOCZY, Piroska E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibition of angiogenesis by adenovirus-mediated sFlt-1 expression in a rat model of corneal neovascularization</atitle><jtitle>Human gene therapy</jtitle><addtitle>Hum Gene Ther</addtitle><date>2001-07-01</date><risdate>2001</risdate><volume>12</volume><issue>10</issue><spage>1299</spage><epage>1310</epage><pages>1299-1310</pages><issn>1043-0342</issn><eissn>1557-7422</eissn><coden>HGTHE3</coden><abstract>Pathological angiogenesis, or the production of new capillary vessels from preexisting vasculature, within the eye is a serious event that often leads to blindness. Upregulation of vascular endothelial growth factor (VEGF) has been linked to neovascularization in the eye, suggesting that it could be a suitable target to inhibit angiogenic changes. This work investigated whether the presence of a proven antiangiogenic factor, the soluble variant of the VEGF receptor, sFlt-1, in the anterior chamber is sufficient to inhibit new vessel formation in the cornea in an animal model of corneal neovascularization. A recombinant adenovirus vector that can mediate efficient in vivo gene transfer and expression in ocular cells was selected as a delivery agent. We have shown that after the injection of Ad.betagal into the anterior chamber of normal and cauterized rat eyes, corneal endothelial cells and cells of the trabecular meshwork were efficiently transduced and that beta-galactosidase (beta-Gal) expression was maintained up to 10 days postinjection. Cauterization significantly increased the amount of immunoreactive VEGF in vehicle- or Ad.null-injected animals (t test, p &lt; 0.001 and p &lt; 0.001, respectively). However, when cauterization was combined with Ad.sflt injection there was no statistically significant increase in the amount of immunoreactive VEGF (p = 0.12). The injection of Ad.sflt into the anterior chamber slowed or inhibited VEGF-induced angiogenic changes. After cauterization, 100% of uninjected and vehicle-injected and 82% of Ad.null-injected animals developed moderate to severe corneal angiogenesis in contrast to 18% of Ad.sflt-injected animals. These in vivo results suggest that the transient presence of antiangiogenic agents in the anterior chamber can be successfully used to inhibit the development of corneal angiogenesis.</abstract><cop>Larchmont, NY</cop><pub>Liebert</pub><pmid>11440623</pmid><doi>10.1089/104303401750270959</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1043-0342
ispartof Human gene therapy, 2001-07, Vol.12 (10), p.1299-1310
issn 1043-0342
1557-7422
language eng
recordid cdi_proquest_miscellaneous_70985769
source MEDLINE; Mary Ann Liebert Online
subjects Adenoviridae - genetics
Adenovirus
Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy
Angiogenesis Inhibitors - pharmacology
Animals
Applied cell therapy and gene therapy
beta-Galactosidase - metabolism
Biological and medical sciences
Biotechnology
Blotting, Western
Cell Line
Cornea - blood supply
Cornea - metabolism
Corneal Neovascularization - therapy
Endothelial Growth Factors - genetics
Endothelium, Vascular - cytology
Eye - metabolism
Fundamental and applied biological sciences. Psychology
Gene therapy
Genetic Vectors
Health. Pharmaceutical industry
Humans
Image Processing, Computer-Assisted
Immunohistochemistry
Industrial applications and implications. Economical aspects
Lymphokines - genetics
Medical sciences
Neovascularization, Pathologic
Nitrates - pharmacology
Potassium Compounds - pharmacology
Proto-Oncogene Proteins - biosynthesis
Proto-Oncogene Proteins - genetics
Rats
Receptor Protein-Tyrosine Kinases - biosynthesis
Receptor Protein-Tyrosine Kinases - genetics
sFlt-1 protein
Silver Nitrate - pharmacology
Time Factors
Transduction, Genetic
Transfusions. Complications. Transfusion reactions. Cell and gene therapy
Transgenes
Umbilical Veins - cytology
Up-Regulation
Vascular Endothelial Growth Factor A
Vascular Endothelial Growth Factor Receptor-1
Vascular endothelial growth factor receptors
Vascular Endothelial Growth Factors
title Inhibition of angiogenesis by adenovirus-mediated sFlt-1 expression in a rat model of corneal neovascularization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A05%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibition%20of%20angiogenesis%20by%20adenovirus-mediated%20sFlt-1%20expression%20in%20a%20rat%20model%20of%20corneal%20neovascularization&rft.jtitle=Human%20gene%20therapy&rft.au=LAI,%20Chooi-May&rft.date=2001-07-01&rft.volume=12&rft.issue=10&rft.spage=1299&rft.epage=1310&rft.pages=1299-1310&rft.issn=1043-0342&rft.eissn=1557-7422&rft.coden=HGTHE3&rft_id=info:doi/10.1089/104303401750270959&rft_dat=%3Cproquest_cross%3E70985769%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18077614&rft_id=info:pmid/11440623&rfr_iscdi=true