Autocorrelation analysis of bone structure

We propose a method called spatial autocorrelation analysis (SACA) to determine the spatial anisotropy of the trabecular bone in order to investigate osteoporosis. For demonstrating the potential of SACA we first evaluate the method on rectangular, simulated test patterns as a simple model for the a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetic resonance imaging 2001-07, Vol.14 (1), p.87-93
Hauptverfasser: Rotter, M., Berg, A., Langenberger, H., Grampp, S., Imhof, H., Moser, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 93
container_issue 1
container_start_page 87
container_title Journal of magnetic resonance imaging
container_volume 14
creator Rotter, M.
Berg, A.
Langenberger, H.
Grampp, S.
Imhof, H.
Moser, E.
description We propose a method called spatial autocorrelation analysis (SACA) to determine the spatial anisotropy of the trabecular bone in order to investigate osteoporosis. For demonstrating the potential of SACA we first evaluate the method on rectangular, simulated test patterns as a simple model for the anisotropic pore structure of the bone. As a next step towards biomedical application, photographic reference images of human vertebral bone were investigated by SACA. Osteoporotic bone structure could be clearly differentiated from non‐osteoporotic sample images. Moreover, for demonstration of the applicability and potential of the method for in vivo characterization of osteoporosis, the microstructure of the human calcaneus was investigated by MR‐microimaging on a young healthy male subject and an osteoporotic female. The measurements were performed using a high‐field (3T) whole‐body MR tomograph equipped with a special, strong head gradient system. The signal was acquired with a surface coil mounted on an in‐house‐built device for convenient immobilization of the subject's foot. Using a 3D gradient echo sequence a resolution of 0.254 × 0.254 × 2.188 mm3 was achieved in vivo. Selected images were inverted, gradient corrected for the inhomogeneous but sensitive detection by the surface coil, and subsequently analyzed by SACA. The anisotropy of bone structure detected by SACA is a possible candidate for noninvasive determination of the osteoporotic status, potentially complementing standard bone mineral density measurements. J. Magn. Reson. Imaging 2001;14:87–93. © 2001 Wiley‐Liss, Inc.
doi_str_mv 10.1002/jmri.1156
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70975704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70975704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3946-aeb3c745ab39b99810e4819818034e3bd23c025457b521d3d34e0130ea30bd0e3</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRbK0u_AOSlaCQeueVZJalaFutiuILN8NMMoXUNFNnErT_3pQEXbk6l8t3vsVB6BjDEAOQi-XK5UOMebSD-pgTEhKeRLvNDZyGOIG4hw68XwKAEIzvox7GjEaEQB-dj-rKptY5U6gqt2WgSlVsfO4Duwi0LU3gK1enVe3MIdpbqMKboy4H6Pnq8mk8Def3k9l4NA9TKlgUKqNpGjOuNBVaiASDYQluMgHKDNUZoSkQznisOcEZzZovYApGUdAZGDpAp6137exnbXwlV7lPTVGo0tjayxhEzGNgDXjWgqmz3juzkGuXr5TbSAxyO4zcDiO3wzTsSSet9cpkf2S3RANctMBXXpjN_yZ5ffs465Rh28h9Zb5_G8p9yCimMZevdxP5NuXvD-JlIm_oD18Iey4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70975704</pqid></control><display><type>article</type><title>Autocorrelation analysis of bone structure</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><creator>Rotter, M. ; Berg, A. ; Langenberger, H. ; Grampp, S. ; Imhof, H. ; Moser, E.</creator><creatorcontrib>Rotter, M. ; Berg, A. ; Langenberger, H. ; Grampp, S. ; Imhof, H. ; Moser, E.</creatorcontrib><description>We propose a method called spatial autocorrelation analysis (SACA) to determine the spatial anisotropy of the trabecular bone in order to investigate osteoporosis. For demonstrating the potential of SACA we first evaluate the method on rectangular, simulated test patterns as a simple model for the anisotropic pore structure of the bone. As a next step towards biomedical application, photographic reference images of human vertebral bone were investigated by SACA. Osteoporotic bone structure could be clearly differentiated from non‐osteoporotic sample images. Moreover, for demonstration of the applicability and potential of the method for in vivo characterization of osteoporosis, the microstructure of the human calcaneus was investigated by MR‐microimaging on a young healthy male subject and an osteoporotic female. The measurements were performed using a high‐field (3T) whole‐body MR tomograph equipped with a special, strong head gradient system. The signal was acquired with a surface coil mounted on an in‐house‐built device for convenient immobilization of the subject's foot. Using a 3D gradient echo sequence a resolution of 0.254 × 0.254 × 2.188 mm3 was achieved in vivo. Selected images were inverted, gradient corrected for the inhomogeneous but sensitive detection by the surface coil, and subsequently analyzed by SACA. The anisotropy of bone structure detected by SACA is a possible candidate for noninvasive determination of the osteoporotic status, potentially complementing standard bone mineral density measurements. J. Magn. Reson. Imaging 2001;14:87–93. © 2001 Wiley‐Liss, Inc.</description><identifier>ISSN: 1053-1807</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.1156</identifier><identifier>PMID: 11436220</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Inc</publisher><subject>Adult ; Aged ; Aged, 80 and over ; Anisotropy ; Bone and Bones - pathology ; bone anisotropy ; Female ; Humans ; Image Enhancement - instrumentation ; magnetic resonance imaging ; Magnetic Resonance Imaging - instrumentation ; Male ; Middle Aged ; osteoporosis ; Osteoporosis - diagnosis ; Phantoms, Imaging ; postprocessing ; Reference Values ; spatial autocorrelation</subject><ispartof>Journal of magnetic resonance imaging, 2001-07, Vol.14 (1), p.87-93</ispartof><rights>Copyright © 2001 Wiley‐Liss, Inc.</rights><rights>Copyright 2001 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3946-aeb3c745ab39b99810e4819818034e3bd23c025457b521d3d34e0130ea30bd0e3</citedby><cites>FETCH-LOGICAL-c3946-aeb3c745ab39b99810e4819818034e3bd23c025457b521d3d34e0130ea30bd0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjmri.1156$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjmri.1156$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,1428,27905,27906,45555,45556,46390,46814</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11436220$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rotter, M.</creatorcontrib><creatorcontrib>Berg, A.</creatorcontrib><creatorcontrib>Langenberger, H.</creatorcontrib><creatorcontrib>Grampp, S.</creatorcontrib><creatorcontrib>Imhof, H.</creatorcontrib><creatorcontrib>Moser, E.</creatorcontrib><title>Autocorrelation analysis of bone structure</title><title>Journal of magnetic resonance imaging</title><addtitle>J. Magn. Reson. Imaging</addtitle><description>We propose a method called spatial autocorrelation analysis (SACA) to determine the spatial anisotropy of the trabecular bone in order to investigate osteoporosis. For demonstrating the potential of SACA we first evaluate the method on rectangular, simulated test patterns as a simple model for the anisotropic pore structure of the bone. As a next step towards biomedical application, photographic reference images of human vertebral bone were investigated by SACA. Osteoporotic bone structure could be clearly differentiated from non‐osteoporotic sample images. Moreover, for demonstration of the applicability and potential of the method for in vivo characterization of osteoporosis, the microstructure of the human calcaneus was investigated by MR‐microimaging on a young healthy male subject and an osteoporotic female. The measurements were performed using a high‐field (3T) whole‐body MR tomograph equipped with a special, strong head gradient system. The signal was acquired with a surface coil mounted on an in‐house‐built device for convenient immobilization of the subject's foot. Using a 3D gradient echo sequence a resolution of 0.254 × 0.254 × 2.188 mm3 was achieved in vivo. Selected images were inverted, gradient corrected for the inhomogeneous but sensitive detection by the surface coil, and subsequently analyzed by SACA. The anisotropy of bone structure detected by SACA is a possible candidate for noninvasive determination of the osteoporotic status, potentially complementing standard bone mineral density measurements. J. Magn. Reson. Imaging 2001;14:87–93. © 2001 Wiley‐Liss, Inc.</description><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Anisotropy</subject><subject>Bone and Bones - pathology</subject><subject>bone anisotropy</subject><subject>Female</subject><subject>Humans</subject><subject>Image Enhancement - instrumentation</subject><subject>magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - instrumentation</subject><subject>Male</subject><subject>Middle Aged</subject><subject>osteoporosis</subject><subject>Osteoporosis - diagnosis</subject><subject>Phantoms, Imaging</subject><subject>postprocessing</subject><subject>Reference Values</subject><subject>spatial autocorrelation</subject><issn>1053-1807</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtLw0AUhQdRbK0u_AOSlaCQeueVZJalaFutiuILN8NMMoXUNFNnErT_3pQEXbk6l8t3vsVB6BjDEAOQi-XK5UOMebSD-pgTEhKeRLvNDZyGOIG4hw68XwKAEIzvox7GjEaEQB-dj-rKptY5U6gqt2WgSlVsfO4Duwi0LU3gK1enVe3MIdpbqMKboy4H6Pnq8mk8Def3k9l4NA9TKlgUKqNpGjOuNBVaiASDYQluMgHKDNUZoSkQznisOcEZzZovYApGUdAZGDpAp6137exnbXwlV7lPTVGo0tjayxhEzGNgDXjWgqmz3juzkGuXr5TbSAxyO4zcDiO3wzTsSSet9cpkf2S3RANctMBXXpjN_yZ5ffs465Rh28h9Zb5_G8p9yCimMZevdxP5NuXvD-JlIm_oD18Iey4</recordid><startdate>200107</startdate><enddate>200107</enddate><creator>Rotter, M.</creator><creator>Berg, A.</creator><creator>Langenberger, H.</creator><creator>Grampp, S.</creator><creator>Imhof, H.</creator><creator>Moser, E.</creator><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200107</creationdate><title>Autocorrelation analysis of bone structure</title><author>Rotter, M. ; Berg, A. ; Langenberger, H. ; Grampp, S. ; Imhof, H. ; Moser, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3946-aeb3c745ab39b99810e4819818034e3bd23c025457b521d3d34e0130ea30bd0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Anisotropy</topic><topic>Bone and Bones - pathology</topic><topic>bone anisotropy</topic><topic>Female</topic><topic>Humans</topic><topic>Image Enhancement - instrumentation</topic><topic>magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - instrumentation</topic><topic>Male</topic><topic>Middle Aged</topic><topic>osteoporosis</topic><topic>Osteoporosis - diagnosis</topic><topic>Phantoms, Imaging</topic><topic>postprocessing</topic><topic>Reference Values</topic><topic>spatial autocorrelation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rotter, M.</creatorcontrib><creatorcontrib>Berg, A.</creatorcontrib><creatorcontrib>Langenberger, H.</creatorcontrib><creatorcontrib>Grampp, S.</creatorcontrib><creatorcontrib>Imhof, H.</creatorcontrib><creatorcontrib>Moser, E.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rotter, M.</au><au>Berg, A.</au><au>Langenberger, H.</au><au>Grampp, S.</au><au>Imhof, H.</au><au>Moser, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autocorrelation analysis of bone structure</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J. Magn. Reson. Imaging</addtitle><date>2001-07</date><risdate>2001</risdate><volume>14</volume><issue>1</issue><spage>87</spage><epage>93</epage><pages>87-93</pages><issn>1053-1807</issn><eissn>1522-2586</eissn><abstract>We propose a method called spatial autocorrelation analysis (SACA) to determine the spatial anisotropy of the trabecular bone in order to investigate osteoporosis. For demonstrating the potential of SACA we first evaluate the method on rectangular, simulated test patterns as a simple model for the anisotropic pore structure of the bone. As a next step towards biomedical application, photographic reference images of human vertebral bone were investigated by SACA. Osteoporotic bone structure could be clearly differentiated from non‐osteoporotic sample images. Moreover, for demonstration of the applicability and potential of the method for in vivo characterization of osteoporosis, the microstructure of the human calcaneus was investigated by MR‐microimaging on a young healthy male subject and an osteoporotic female. The measurements were performed using a high‐field (3T) whole‐body MR tomograph equipped with a special, strong head gradient system. The signal was acquired with a surface coil mounted on an in‐house‐built device for convenient immobilization of the subject's foot. Using a 3D gradient echo sequence a resolution of 0.254 × 0.254 × 2.188 mm3 was achieved in vivo. Selected images were inverted, gradient corrected for the inhomogeneous but sensitive detection by the surface coil, and subsequently analyzed by SACA. The anisotropy of bone structure detected by SACA is a possible candidate for noninvasive determination of the osteoporotic status, potentially complementing standard bone mineral density measurements. J. Magn. Reson. Imaging 2001;14:87–93. © 2001 Wiley‐Liss, Inc.</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>11436220</pmid><doi>10.1002/jmri.1156</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-1807
ispartof Journal of magnetic resonance imaging, 2001-07, Vol.14 (1), p.87-93
issn 1053-1807
1522-2586
language eng
recordid cdi_proquest_miscellaneous_70975704
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Free Content
subjects Adult
Aged
Aged, 80 and over
Anisotropy
Bone and Bones - pathology
bone anisotropy
Female
Humans
Image Enhancement - instrumentation
magnetic resonance imaging
Magnetic Resonance Imaging - instrumentation
Male
Middle Aged
osteoporosis
Osteoporosis - diagnosis
Phantoms, Imaging
postprocessing
Reference Values
spatial autocorrelation
title Autocorrelation analysis of bone structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T09%3A27%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autocorrelation%20analysis%20of%20bone%20structure&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Rotter,%20M.&rft.date=2001-07&rft.volume=14&rft.issue=1&rft.spage=87&rft.epage=93&rft.pages=87-93&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.1156&rft_dat=%3Cproquest_cross%3E70975704%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70975704&rft_id=info:pmid/11436220&rfr_iscdi=true