Autocorrelation analysis of bone structure
We propose a method called spatial autocorrelation analysis (SACA) to determine the spatial anisotropy of the trabecular bone in order to investigate osteoporosis. For demonstrating the potential of SACA we first evaluate the method on rectangular, simulated test patterns as a simple model for the a...
Gespeichert in:
Veröffentlicht in: | Journal of magnetic resonance imaging 2001-07, Vol.14 (1), p.87-93 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 93 |
---|---|
container_issue | 1 |
container_start_page | 87 |
container_title | Journal of magnetic resonance imaging |
container_volume | 14 |
creator | Rotter, M. Berg, A. Langenberger, H. Grampp, S. Imhof, H. Moser, E. |
description | We propose a method called spatial autocorrelation analysis (SACA) to determine the spatial anisotropy of the trabecular bone in order to investigate osteoporosis. For demonstrating the potential of SACA we first evaluate the method on rectangular, simulated test patterns as a simple model for the anisotropic pore structure of the bone. As a next step towards biomedical application, photographic reference images of human vertebral bone were investigated by SACA. Osteoporotic bone structure could be clearly differentiated from non‐osteoporotic sample images. Moreover, for demonstration of the applicability and potential of the method for in vivo characterization of osteoporosis, the microstructure of the human calcaneus was investigated by MR‐microimaging on a young healthy male subject and an osteoporotic female. The measurements were performed using a high‐field (3T) whole‐body MR tomograph equipped with a special, strong head gradient system. The signal was acquired with a surface coil mounted on an in‐house‐built device for convenient immobilization of the subject's foot. Using a 3D gradient echo sequence a resolution of 0.254 × 0.254 × 2.188 mm3 was achieved in vivo. Selected images were inverted, gradient corrected for the inhomogeneous but sensitive detection by the surface coil, and subsequently analyzed by SACA. The anisotropy of bone structure detected by SACA is a possible candidate for noninvasive determination of the osteoporotic status, potentially complementing standard bone mineral density measurements. J. Magn. Reson. Imaging 2001;14:87–93. © 2001 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/jmri.1156 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70975704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70975704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3946-aeb3c745ab39b99810e4819818034e3bd23c025457b521d3d34e0130ea30bd0e3</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRbK0u_AOSlaCQeueVZJalaFutiuILN8NMMoXUNFNnErT_3pQEXbk6l8t3vsVB6BjDEAOQi-XK5UOMebSD-pgTEhKeRLvNDZyGOIG4hw68XwKAEIzvox7GjEaEQB-dj-rKptY5U6gqt2WgSlVsfO4Duwi0LU3gK1enVe3MIdpbqMKboy4H6Pnq8mk8Def3k9l4NA9TKlgUKqNpGjOuNBVaiASDYQluMgHKDNUZoSkQznisOcEZzZovYApGUdAZGDpAp6137exnbXwlV7lPTVGo0tjayxhEzGNgDXjWgqmz3juzkGuXr5TbSAxyO4zcDiO3wzTsSSet9cpkf2S3RANctMBXXpjN_yZ5ffs465Rh28h9Zb5_G8p9yCimMZevdxP5NuXvD-JlIm_oD18Iey4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70975704</pqid></control><display><type>article</type><title>Autocorrelation analysis of bone structure</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><creator>Rotter, M. ; Berg, A. ; Langenberger, H. ; Grampp, S. ; Imhof, H. ; Moser, E.</creator><creatorcontrib>Rotter, M. ; Berg, A. ; Langenberger, H. ; Grampp, S. ; Imhof, H. ; Moser, E.</creatorcontrib><description>We propose a method called spatial autocorrelation analysis (SACA) to determine the spatial anisotropy of the trabecular bone in order to investigate osteoporosis. For demonstrating the potential of SACA we first evaluate the method on rectangular, simulated test patterns as a simple model for the anisotropic pore structure of the bone. As a next step towards biomedical application, photographic reference images of human vertebral bone were investigated by SACA. Osteoporotic bone structure could be clearly differentiated from non‐osteoporotic sample images. Moreover, for demonstration of the applicability and potential of the method for in vivo characterization of osteoporosis, the microstructure of the human calcaneus was investigated by MR‐microimaging on a young healthy male subject and an osteoporotic female. The measurements were performed using a high‐field (3T) whole‐body MR tomograph equipped with a special, strong head gradient system. The signal was acquired with a surface coil mounted on an in‐house‐built device for convenient immobilization of the subject's foot. Using a 3D gradient echo sequence a resolution of 0.254 × 0.254 × 2.188 mm3 was achieved in vivo. Selected images were inverted, gradient corrected for the inhomogeneous but sensitive detection by the surface coil, and subsequently analyzed by SACA. The anisotropy of bone structure detected by SACA is a possible candidate for noninvasive determination of the osteoporotic status, potentially complementing standard bone mineral density measurements. J. Magn. Reson. Imaging 2001;14:87–93. © 2001 Wiley‐Liss, Inc.</description><identifier>ISSN: 1053-1807</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.1156</identifier><identifier>PMID: 11436220</identifier><language>eng</language><publisher>New York: John Wiley & Sons, Inc</publisher><subject>Adult ; Aged ; Aged, 80 and over ; Anisotropy ; Bone and Bones - pathology ; bone anisotropy ; Female ; Humans ; Image Enhancement - instrumentation ; magnetic resonance imaging ; Magnetic Resonance Imaging - instrumentation ; Male ; Middle Aged ; osteoporosis ; Osteoporosis - diagnosis ; Phantoms, Imaging ; postprocessing ; Reference Values ; spatial autocorrelation</subject><ispartof>Journal of magnetic resonance imaging, 2001-07, Vol.14 (1), p.87-93</ispartof><rights>Copyright © 2001 Wiley‐Liss, Inc.</rights><rights>Copyright 2001 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3946-aeb3c745ab39b99810e4819818034e3bd23c025457b521d3d34e0130ea30bd0e3</citedby><cites>FETCH-LOGICAL-c3946-aeb3c745ab39b99810e4819818034e3bd23c025457b521d3d34e0130ea30bd0e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjmri.1156$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjmri.1156$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,1428,27905,27906,45555,45556,46390,46814</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11436220$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rotter, M.</creatorcontrib><creatorcontrib>Berg, A.</creatorcontrib><creatorcontrib>Langenberger, H.</creatorcontrib><creatorcontrib>Grampp, S.</creatorcontrib><creatorcontrib>Imhof, H.</creatorcontrib><creatorcontrib>Moser, E.</creatorcontrib><title>Autocorrelation analysis of bone structure</title><title>Journal of magnetic resonance imaging</title><addtitle>J. Magn. Reson. Imaging</addtitle><description>We propose a method called spatial autocorrelation analysis (SACA) to determine the spatial anisotropy of the trabecular bone in order to investigate osteoporosis. For demonstrating the potential of SACA we first evaluate the method on rectangular, simulated test patterns as a simple model for the anisotropic pore structure of the bone. As a next step towards biomedical application, photographic reference images of human vertebral bone were investigated by SACA. Osteoporotic bone structure could be clearly differentiated from non‐osteoporotic sample images. Moreover, for demonstration of the applicability and potential of the method for in vivo characterization of osteoporosis, the microstructure of the human calcaneus was investigated by MR‐microimaging on a young healthy male subject and an osteoporotic female. The measurements were performed using a high‐field (3T) whole‐body MR tomograph equipped with a special, strong head gradient system. The signal was acquired with a surface coil mounted on an in‐house‐built device for convenient immobilization of the subject's foot. Using a 3D gradient echo sequence a resolution of 0.254 × 0.254 × 2.188 mm3 was achieved in vivo. Selected images were inverted, gradient corrected for the inhomogeneous but sensitive detection by the surface coil, and subsequently analyzed by SACA. The anisotropy of bone structure detected by SACA is a possible candidate for noninvasive determination of the osteoporotic status, potentially complementing standard bone mineral density measurements. J. Magn. Reson. Imaging 2001;14:87–93. © 2001 Wiley‐Liss, Inc.</description><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Anisotropy</subject><subject>Bone and Bones - pathology</subject><subject>bone anisotropy</subject><subject>Female</subject><subject>Humans</subject><subject>Image Enhancement - instrumentation</subject><subject>magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - instrumentation</subject><subject>Male</subject><subject>Middle Aged</subject><subject>osteoporosis</subject><subject>Osteoporosis - diagnosis</subject><subject>Phantoms, Imaging</subject><subject>postprocessing</subject><subject>Reference Values</subject><subject>spatial autocorrelation</subject><issn>1053-1807</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtLw0AUhQdRbK0u_AOSlaCQeueVZJalaFutiuILN8NMMoXUNFNnErT_3pQEXbk6l8t3vsVB6BjDEAOQi-XK5UOMebSD-pgTEhKeRLvNDZyGOIG4hw68XwKAEIzvox7GjEaEQB-dj-rKptY5U6gqt2WgSlVsfO4Duwi0LU3gK1enVe3MIdpbqMKboy4H6Pnq8mk8Def3k9l4NA9TKlgUKqNpGjOuNBVaiASDYQluMgHKDNUZoSkQznisOcEZzZovYApGUdAZGDpAp6137exnbXwlV7lPTVGo0tjayxhEzGNgDXjWgqmz3juzkGuXr5TbSAxyO4zcDiO3wzTsSSet9cpkf2S3RANctMBXXpjN_yZ5ffs465Rh28h9Zb5_G8p9yCimMZevdxP5NuXvD-JlIm_oD18Iey4</recordid><startdate>200107</startdate><enddate>200107</enddate><creator>Rotter, M.</creator><creator>Berg, A.</creator><creator>Langenberger, H.</creator><creator>Grampp, S.</creator><creator>Imhof, H.</creator><creator>Moser, E.</creator><general>John Wiley & Sons, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200107</creationdate><title>Autocorrelation analysis of bone structure</title><author>Rotter, M. ; Berg, A. ; Langenberger, H. ; Grampp, S. ; Imhof, H. ; Moser, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3946-aeb3c745ab39b99810e4819818034e3bd23c025457b521d3d34e0130ea30bd0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Anisotropy</topic><topic>Bone and Bones - pathology</topic><topic>bone anisotropy</topic><topic>Female</topic><topic>Humans</topic><topic>Image Enhancement - instrumentation</topic><topic>magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - instrumentation</topic><topic>Male</topic><topic>Middle Aged</topic><topic>osteoporosis</topic><topic>Osteoporosis - diagnosis</topic><topic>Phantoms, Imaging</topic><topic>postprocessing</topic><topic>Reference Values</topic><topic>spatial autocorrelation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rotter, M.</creatorcontrib><creatorcontrib>Berg, A.</creatorcontrib><creatorcontrib>Langenberger, H.</creatorcontrib><creatorcontrib>Grampp, S.</creatorcontrib><creatorcontrib>Imhof, H.</creatorcontrib><creatorcontrib>Moser, E.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rotter, M.</au><au>Berg, A.</au><au>Langenberger, H.</au><au>Grampp, S.</au><au>Imhof, H.</au><au>Moser, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autocorrelation analysis of bone structure</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J. Magn. Reson. Imaging</addtitle><date>2001-07</date><risdate>2001</risdate><volume>14</volume><issue>1</issue><spage>87</spage><epage>93</epage><pages>87-93</pages><issn>1053-1807</issn><eissn>1522-2586</eissn><abstract>We propose a method called spatial autocorrelation analysis (SACA) to determine the spatial anisotropy of the trabecular bone in order to investigate osteoporosis. For demonstrating the potential of SACA we first evaluate the method on rectangular, simulated test patterns as a simple model for the anisotropic pore structure of the bone. As a next step towards biomedical application, photographic reference images of human vertebral bone were investigated by SACA. Osteoporotic bone structure could be clearly differentiated from non‐osteoporotic sample images. Moreover, for demonstration of the applicability and potential of the method for in vivo characterization of osteoporosis, the microstructure of the human calcaneus was investigated by MR‐microimaging on a young healthy male subject and an osteoporotic female. The measurements were performed using a high‐field (3T) whole‐body MR tomograph equipped with a special, strong head gradient system. The signal was acquired with a surface coil mounted on an in‐house‐built device for convenient immobilization of the subject's foot. Using a 3D gradient echo sequence a resolution of 0.254 × 0.254 × 2.188 mm3 was achieved in vivo. Selected images were inverted, gradient corrected for the inhomogeneous but sensitive detection by the surface coil, and subsequently analyzed by SACA. The anisotropy of bone structure detected by SACA is a possible candidate for noninvasive determination of the osteoporotic status, potentially complementing standard bone mineral density measurements. J. Magn. Reson. Imaging 2001;14:87–93. © 2001 Wiley‐Liss, Inc.</abstract><cop>New York</cop><pub>John Wiley & Sons, Inc</pub><pmid>11436220</pmid><doi>10.1002/jmri.1156</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-1807 |
ispartof | Journal of magnetic resonance imaging, 2001-07, Vol.14 (1), p.87-93 |
issn | 1053-1807 1522-2586 |
language | eng |
recordid | cdi_proquest_miscellaneous_70975704 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Free Content |
subjects | Adult Aged Aged, 80 and over Anisotropy Bone and Bones - pathology bone anisotropy Female Humans Image Enhancement - instrumentation magnetic resonance imaging Magnetic Resonance Imaging - instrumentation Male Middle Aged osteoporosis Osteoporosis - diagnosis Phantoms, Imaging postprocessing Reference Values spatial autocorrelation |
title | Autocorrelation analysis of bone structure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T09%3A27%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autocorrelation%20analysis%20of%20bone%20structure&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Rotter,%20M.&rft.date=2001-07&rft.volume=14&rft.issue=1&rft.spage=87&rft.epage=93&rft.pages=87-93&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.1156&rft_dat=%3Cproquest_cross%3E70975704%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70975704&rft_id=info:pmid/11436220&rfr_iscdi=true |