Temperature-independent and -dependent expression of desaturase genes in filamentous cyanobacterium Spirulina platensis strain C1 (Arthrospira sp. PCC 9438)
Abstract The alteration of the degree of unsaturated fatty acids in membrane lipids has been shown to be a key mechanism in the tolerance to temperature stress of living organisms. The step that most influences the physiology of membranes has been proposed to be the amount of di-unsaturated fatty ac...
Gespeichert in:
Veröffentlicht in: | FEMS microbiology letters 2000-03, Vol.184 (2), p.207-213 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 213 |
---|---|
container_issue | 2 |
container_start_page | 207 |
container_title | FEMS microbiology letters |
container_volume | 184 |
creator | Deshnium, Patcharaporn Paithoonrangsarid, Kalyanee Suphatrakul, Amporn Meesapyodsuk, Dauenpen Tanticharoen, Morakot Cheevadhanarak, Supapon |
description | Abstract
The alteration of the degree of unsaturated fatty acids in membrane lipids has been shown to be a key mechanism in the tolerance to temperature stress of living organisms. The step that most influences the physiology of membranes has been proposed to be the amount of di-unsaturated fatty acids in membrane lipids. In this study, we found that the desaturation of fatty acid to yield the di-unsaturated fatty acid 18:2(9,12), in Spirulina platensis strain C1, was not regulated by temperature. As shown by the fatty acid composition and gene expression patterns, the levels of 18:1(9) and 18:2(9,12) remained almost constant either when the cells were grown at 35°C (normal growth temperature) or 22 and 40°C. The expression of desC (Δ9) and desA (Δ12) genes, which are responsible for the introduction of first and second double bonds into fatty acids, respectively, was not affected by the temperature shift from 35 to 22°C or to 40°C. Only the expression and mRNA stability of the desD gene (Δ6) that is responsible for the introduction of a third double bond into fatty acids were enhanced by a temperature shift from 35 to 22°C, but not the shift from 35 to 40°C. The increase in the level of desD mRNA elevated the desaturation of fatty acid from 18:2(9,12) to 18:3(6,9,12) at 22°C. However, the increased level of 18:3(6,9,12) was observed after 36 h of incubation at 22°C, indicating a slow response to temperature of fatty acid desaturation in this cyanobacterium. These findings suggest that the desaturation of fatty acids might not be a key mechanism in the response to the temperature change of S. platensis strain C1. |
doi_str_mv | 10.1111/j.1574-6968.2000.tb09015.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70968212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1111/j.1574-6968.2000.tb09015.x</oup_id><sourcerecordid>2311068779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4057-18c0fba53f5f7ef8f5315bd846504120022e7b78d01a5657400219a3b71979063</originalsourceid><addsrcrecordid>eNqVkdGK1DAUhoMo7uzqK0hQEb1oTdKmab0QluKqMKLgeh3S9kQztGlNWpx5l31YT5nBFdELE0hI8v0n55yfkMecpRzHy13KpcqToirKVDDG0rlhFeMy3d8hm19Pd8mGZapMOKvUGTmPcYdoLlhxn5xxpniWC7EhN9cwTBDMvARInO9gAlz8TI3vaHJ7hP0UIEY3ejpa2kFcFSYC_QoeInWeWtebAdFxibQ9GD82pp0huGWgnycXlt55Q6fezOCjizTOwaCq5vT5ZZi_hTEiZGicUvqprmmVZ-WLB-SeNX2Eh6f9gny5enNdv0u2H9--ry-3SZszqRJetsw2RmZWWgW2tDLjsunKvJAs59ghIUA1quwYN7LA_uANr0zWKF6pihXZBXl2jDuF8fsCcdaDiy30vfGA5WjFsJ-CCwSf_AHuxiV4zE2LjHNWlEpVSL06Ui1WFQNYPQU3mHDQnOnVQb3Tq016tUmvDuqTg3qP4kenL5ZmgO436dEyBJ6eABNb09tgfOviLZfhLDhir4_YD9fD4T8y0FcftoIpDCCPAcZl-oc8-VsBPwFyC8fm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2311068779</pqid></control><display><type>article</type><title>Temperature-independent and -dependent expression of desaturase genes in filamentous cyanobacterium Spirulina platensis strain C1 (Arthrospira sp. PCC 9438)</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>Deshnium, Patcharaporn ; Paithoonrangsarid, Kalyanee ; Suphatrakul, Amporn ; Meesapyodsuk, Dauenpen ; Tanticharoen, Morakot ; Cheevadhanarak, Supapon</creator><creatorcontrib>Deshnium, Patcharaporn ; Paithoonrangsarid, Kalyanee ; Suphatrakul, Amporn ; Meesapyodsuk, Dauenpen ; Tanticharoen, Morakot ; Cheevadhanarak, Supapon</creatorcontrib><description>Abstract
The alteration of the degree of unsaturated fatty acids in membrane lipids has been shown to be a key mechanism in the tolerance to temperature stress of living organisms. The step that most influences the physiology of membranes has been proposed to be the amount of di-unsaturated fatty acids in membrane lipids. In this study, we found that the desaturation of fatty acid to yield the di-unsaturated fatty acid 18:2(9,12), in Spirulina platensis strain C1, was not regulated by temperature. As shown by the fatty acid composition and gene expression patterns, the levels of 18:1(9) and 18:2(9,12) remained almost constant either when the cells were grown at 35°C (normal growth temperature) or 22 and 40°C. The expression of desC (Δ9) and desA (Δ12) genes, which are responsible for the introduction of first and second double bonds into fatty acids, respectively, was not affected by the temperature shift from 35 to 22°C or to 40°C. Only the expression and mRNA stability of the desD gene (Δ6) that is responsible for the introduction of a third double bond into fatty acids were enhanced by a temperature shift from 35 to 22°C, but not the shift from 35 to 40°C. The increase in the level of desD mRNA elevated the desaturation of fatty acid from 18:2(9,12) to 18:3(6,9,12) at 22°C. However, the increased level of 18:3(6,9,12) was observed after 36 h of incubation at 22°C, indicating a slow response to temperature of fatty acid desaturation in this cyanobacterium. These findings suggest that the desaturation of fatty acids might not be a key mechanism in the response to the temperature change of S. platensis strain C1.</description><identifier>ISSN: 0378-1097</identifier><identifier>EISSN: 1574-6968</identifier><identifier>DOI: 10.1111/j.1574-6968.2000.tb09015.x</identifier><identifier>PMID: 10713422</identifier><identifier>CODEN: FMLED7</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Bacteriology ; Biological and medical sciences ; Biology of microorganisms of confirmed or potential industrial interest ; Biotechnology ; Culture Media ; Cyanobacteria ; Cyanobacteria - enzymology ; Cyanobacteria - genetics ; Desaturase ; Desaturation ; Fatty acid composition ; Fatty Acid Desaturases - genetics ; Fatty Acid Desaturases - metabolism ; Fatty acid desaturation ; Fatty acids ; Fatty Acids - metabolism ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Gene Expression Regulation, Bacterial ; Gene regulation ; Genes ; Genetics ; Half-Life ; Lipids ; Membranes ; Microbiology ; Mission oriented research ; mRNA stability ; RNA, Messenger - metabolism ; Spirulina platensis ; Temperature ; Temperature adaptation ; Temperature dependence ; Temperature stress ; Temperature tolerance</subject><ispartof>FEMS microbiology letters, 2000-03, Vol.184 (2), p.207-213</ispartof><rights>2000 Federation of European Microbiological Societies 2000</rights><rights>2000 INIST-CNRS</rights><rights>2000 Federation of European Microbiological Societies</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4057-18c0fba53f5f7ef8f5315bd846504120022e7b78d01a5657400219a3b71979063</citedby><cites>FETCH-LOGICAL-c4057-18c0fba53f5f7ef8f5315bd846504120022e7b78d01a5657400219a3b71979063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1574-6968.2000.tb09015.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1574-6968.2000.tb09015.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1313161$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10713422$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deshnium, Patcharaporn</creatorcontrib><creatorcontrib>Paithoonrangsarid, Kalyanee</creatorcontrib><creatorcontrib>Suphatrakul, Amporn</creatorcontrib><creatorcontrib>Meesapyodsuk, Dauenpen</creatorcontrib><creatorcontrib>Tanticharoen, Morakot</creatorcontrib><creatorcontrib>Cheevadhanarak, Supapon</creatorcontrib><title>Temperature-independent and -dependent expression of desaturase genes in filamentous cyanobacterium Spirulina platensis strain C1 (Arthrospira sp. PCC 9438)</title><title>FEMS microbiology letters</title><addtitle>FEMS Microbiol Lett</addtitle><description>Abstract
The alteration of the degree of unsaturated fatty acids in membrane lipids has been shown to be a key mechanism in the tolerance to temperature stress of living organisms. The step that most influences the physiology of membranes has been proposed to be the amount of di-unsaturated fatty acids in membrane lipids. In this study, we found that the desaturation of fatty acid to yield the di-unsaturated fatty acid 18:2(9,12), in Spirulina platensis strain C1, was not regulated by temperature. As shown by the fatty acid composition and gene expression patterns, the levels of 18:1(9) and 18:2(9,12) remained almost constant either when the cells were grown at 35°C (normal growth temperature) or 22 and 40°C. The expression of desC (Δ9) and desA (Δ12) genes, which are responsible for the introduction of first and second double bonds into fatty acids, respectively, was not affected by the temperature shift from 35 to 22°C or to 40°C. Only the expression and mRNA stability of the desD gene (Δ6) that is responsible for the introduction of a third double bond into fatty acids were enhanced by a temperature shift from 35 to 22°C, but not the shift from 35 to 40°C. The increase in the level of desD mRNA elevated the desaturation of fatty acid from 18:2(9,12) to 18:3(6,9,12) at 22°C. However, the increased level of 18:3(6,9,12) was observed after 36 h of incubation at 22°C, indicating a slow response to temperature of fatty acid desaturation in this cyanobacterium. These findings suggest that the desaturation of fatty acids might not be a key mechanism in the response to the temperature change of S. platensis strain C1.</description><subject>Bacteriology</subject><subject>Biological and medical sciences</subject><subject>Biology of microorganisms of confirmed or potential industrial interest</subject><subject>Biotechnology</subject><subject>Culture Media</subject><subject>Cyanobacteria</subject><subject>Cyanobacteria - enzymology</subject><subject>Cyanobacteria - genetics</subject><subject>Desaturase</subject><subject>Desaturation</subject><subject>Fatty acid composition</subject><subject>Fatty Acid Desaturases - genetics</subject><subject>Fatty Acid Desaturases - metabolism</subject><subject>Fatty acid desaturation</subject><subject>Fatty acids</subject><subject>Fatty Acids - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Gene regulation</subject><subject>Genes</subject><subject>Genetics</subject><subject>Half-Life</subject><subject>Lipids</subject><subject>Membranes</subject><subject>Microbiology</subject><subject>Mission oriented research</subject><subject>mRNA stability</subject><subject>RNA, Messenger - metabolism</subject><subject>Spirulina platensis</subject><subject>Temperature</subject><subject>Temperature adaptation</subject><subject>Temperature dependence</subject><subject>Temperature stress</subject><subject>Temperature tolerance</subject><issn>0378-1097</issn><issn>1574-6968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqVkdGK1DAUhoMo7uzqK0hQEb1oTdKmab0QluKqMKLgeh3S9kQztGlNWpx5l31YT5nBFdELE0hI8v0n55yfkMecpRzHy13KpcqToirKVDDG0rlhFeMy3d8hm19Pd8mGZapMOKvUGTmPcYdoLlhxn5xxpniWC7EhN9cwTBDMvARInO9gAlz8TI3vaHJ7hP0UIEY3ejpa2kFcFSYC_QoeInWeWtebAdFxibQ9GD82pp0huGWgnycXlt55Q6fezOCjizTOwaCq5vT5ZZi_hTEiZGicUvqprmmVZ-WLB-SeNX2Eh6f9gny5enNdv0u2H9--ry-3SZszqRJetsw2RmZWWgW2tDLjsunKvJAs59ghIUA1quwYN7LA_uANr0zWKF6pihXZBXl2jDuF8fsCcdaDiy30vfGA5WjFsJ-CCwSf_AHuxiV4zE2LjHNWlEpVSL06Ui1WFQNYPQU3mHDQnOnVQb3Tq016tUmvDuqTg3qP4kenL5ZmgO436dEyBJ6eABNb09tgfOviLZfhLDhir4_YD9fD4T8y0FcftoIpDCCPAcZl-oc8-VsBPwFyC8fm</recordid><startdate>200003</startdate><enddate>200003</enddate><creator>Deshnium, Patcharaporn</creator><creator>Paithoonrangsarid, Kalyanee</creator><creator>Suphatrakul, Amporn</creator><creator>Meesapyodsuk, Dauenpen</creator><creator>Tanticharoen, Morakot</creator><creator>Cheevadhanarak, Supapon</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200003</creationdate><title>Temperature-independent and -dependent expression of desaturase genes in filamentous cyanobacterium Spirulina platensis strain C1 (Arthrospira sp. PCC 9438)</title><author>Deshnium, Patcharaporn ; Paithoonrangsarid, Kalyanee ; Suphatrakul, Amporn ; Meesapyodsuk, Dauenpen ; Tanticharoen, Morakot ; Cheevadhanarak, Supapon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4057-18c0fba53f5f7ef8f5315bd846504120022e7b78d01a5657400219a3b71979063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Bacteriology</topic><topic>Biological and medical sciences</topic><topic>Biology of microorganisms of confirmed or potential industrial interest</topic><topic>Biotechnology</topic><topic>Culture Media</topic><topic>Cyanobacteria</topic><topic>Cyanobacteria - enzymology</topic><topic>Cyanobacteria - genetics</topic><topic>Desaturase</topic><topic>Desaturation</topic><topic>Fatty acid composition</topic><topic>Fatty Acid Desaturases - genetics</topic><topic>Fatty Acid Desaturases - metabolism</topic><topic>Fatty acid desaturation</topic><topic>Fatty acids</topic><topic>Fatty Acids - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Gene regulation</topic><topic>Genes</topic><topic>Genetics</topic><topic>Half-Life</topic><topic>Lipids</topic><topic>Membranes</topic><topic>Microbiology</topic><topic>Mission oriented research</topic><topic>mRNA stability</topic><topic>RNA, Messenger - metabolism</topic><topic>Spirulina platensis</topic><topic>Temperature</topic><topic>Temperature adaptation</topic><topic>Temperature dependence</topic><topic>Temperature stress</topic><topic>Temperature tolerance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deshnium, Patcharaporn</creatorcontrib><creatorcontrib>Paithoonrangsarid, Kalyanee</creatorcontrib><creatorcontrib>Suphatrakul, Amporn</creatorcontrib><creatorcontrib>Meesapyodsuk, Dauenpen</creatorcontrib><creatorcontrib>Tanticharoen, Morakot</creatorcontrib><creatorcontrib>Cheevadhanarak, Supapon</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>FEMS microbiology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deshnium, Patcharaporn</au><au>Paithoonrangsarid, Kalyanee</au><au>Suphatrakul, Amporn</au><au>Meesapyodsuk, Dauenpen</au><au>Tanticharoen, Morakot</au><au>Cheevadhanarak, Supapon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature-independent and -dependent expression of desaturase genes in filamentous cyanobacterium Spirulina platensis strain C1 (Arthrospira sp. PCC 9438)</atitle><jtitle>FEMS microbiology letters</jtitle><addtitle>FEMS Microbiol Lett</addtitle><date>2000-03</date><risdate>2000</risdate><volume>184</volume><issue>2</issue><spage>207</spage><epage>213</epage><pages>207-213</pages><issn>0378-1097</issn><eissn>1574-6968</eissn><coden>FMLED7</coden><abstract>Abstract
The alteration of the degree of unsaturated fatty acids in membrane lipids has been shown to be a key mechanism in the tolerance to temperature stress of living organisms. The step that most influences the physiology of membranes has been proposed to be the amount of di-unsaturated fatty acids in membrane lipids. In this study, we found that the desaturation of fatty acid to yield the di-unsaturated fatty acid 18:2(9,12), in Spirulina platensis strain C1, was not regulated by temperature. As shown by the fatty acid composition and gene expression patterns, the levels of 18:1(9) and 18:2(9,12) remained almost constant either when the cells were grown at 35°C (normal growth temperature) or 22 and 40°C. The expression of desC (Δ9) and desA (Δ12) genes, which are responsible for the introduction of first and second double bonds into fatty acids, respectively, was not affected by the temperature shift from 35 to 22°C or to 40°C. Only the expression and mRNA stability of the desD gene (Δ6) that is responsible for the introduction of a third double bond into fatty acids were enhanced by a temperature shift from 35 to 22°C, but not the shift from 35 to 40°C. The increase in the level of desD mRNA elevated the desaturation of fatty acid from 18:2(9,12) to 18:3(6,9,12) at 22°C. However, the increased level of 18:3(6,9,12) was observed after 36 h of incubation at 22°C, indicating a slow response to temperature of fatty acid desaturation in this cyanobacterium. These findings suggest that the desaturation of fatty acids might not be a key mechanism in the response to the temperature change of S. platensis strain C1.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>10713422</pmid><doi>10.1111/j.1574-6968.2000.tb09015.x</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-1097 |
ispartof | FEMS microbiology letters, 2000-03, Vol.184 (2), p.207-213 |
issn | 0378-1097 1574-6968 |
language | eng |
recordid | cdi_proquest_miscellaneous_70968212 |
source | MEDLINE; Oxford University Press Journals All Titles (1996-Current); Wiley Online Library All Journals; Alma/SFX Local Collection |
subjects | Bacteriology Biological and medical sciences Biology of microorganisms of confirmed or potential industrial interest Biotechnology Culture Media Cyanobacteria Cyanobacteria - enzymology Cyanobacteria - genetics Desaturase Desaturation Fatty acid composition Fatty Acid Desaturases - genetics Fatty Acid Desaturases - metabolism Fatty acid desaturation Fatty acids Fatty Acids - metabolism Fundamental and applied biological sciences. Psychology Gene expression Gene Expression Regulation, Bacterial Gene regulation Genes Genetics Half-Life Lipids Membranes Microbiology Mission oriented research mRNA stability RNA, Messenger - metabolism Spirulina platensis Temperature Temperature adaptation Temperature dependence Temperature stress Temperature tolerance |
title | Temperature-independent and -dependent expression of desaturase genes in filamentous cyanobacterium Spirulina platensis strain C1 (Arthrospira sp. PCC 9438) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A47%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature-independent%20and%20-dependent%20expression%20of%20desaturase%20genes%20in%20filamentous%20cyanobacterium%20Spirulina%20platensis%20strain%20C1%20(Arthrospira%20sp.%20PCC%209438)&rft.jtitle=FEMS%20microbiology%20letters&rft.au=Deshnium,%20Patcharaporn&rft.date=2000-03&rft.volume=184&rft.issue=2&rft.spage=207&rft.epage=213&rft.pages=207-213&rft.issn=0378-1097&rft.eissn=1574-6968&rft.coden=FMLED7&rft_id=info:doi/10.1111/j.1574-6968.2000.tb09015.x&rft_dat=%3Cproquest_cross%3E2311068779%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2311068779&rft_id=info:pmid/10713422&rft_oup_id=10.1111/j.1574-6968.2000.tb09015.x&rfr_iscdi=true |