Myelin membranes isolated from rats intracranially injected with apotransferrin are more susceptible to in vitro peroxidation

Purified myelin obtained from 17 day old rats intracranially injected with aTf at 3 days of age was submitted to in vitro peroxidation using Fe + ascorbic acid (FeA) or Cu + H2O2 (CuH), to investigate the susceptibility of this membrane to in vitro metal catalyzed peroxidation. There was an increase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurochemical research 2000-01, Vol.25 (1), p.87-93
Hauptverfasser: Escobar Cabrera, O E, Soto, E F, Pasquini, J M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purified myelin obtained from 17 day old rats intracranially injected with aTf at 3 days of age was submitted to in vitro peroxidation using Fe + ascorbic acid (FeA) or Cu + H2O2 (CuH), to investigate the susceptibility of this membrane to in vitro metal catalyzed peroxidation. There was an increase in thiobarbituric acid-reactive-substances (TBARS) (60%) and in protein-associated carbonyls (PAC) (20%) in the myelin from aTf injected rats in comparison to myelin from controls, indicating a higher susceptibility to peroxidation. Desferoxamine (DFX) injected simultaneously with aTf did not change the response of myelin to aTf. CNS myelin is highly vulnerable to oxidative stress, and its susceptibility to peroxidation increases in myelin isolated from aTf injected rats. This increased liability to peroxidation as well as the previously reported aTf-dependent increment in certain myelin proteins and lipids and in the expression of specific myelin mRNAS, does not appear to be due to an increased amount of iron bound to the injected aTf. The changes in composition that we have previously reported could result in an abnormal myelin, allowing the peroxidative system to act upon the membrane more easily than in normal circumstances.
ISSN:0364-3190
1573-6903
DOI:10.1023/A:1007543600609