Image metric-based correction (Autocorrection) of motion effects: Analysis of image metrics
Magnetic resonance (MR) imaging of the shoulder necessitates high spatial and contrast resolution resulting in long acquisition times, predisposing these images to degradation due to motion. Autocorrection is a new motion correction algorithm that attempts to deduce motion during imaging by calculat...
Gespeichert in:
Veröffentlicht in: | Journal of magnetic resonance imaging 2000-02, Vol.11 (2), p.174-181 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 181 |
---|---|
container_issue | 2 |
container_start_page | 174 |
container_title | Journal of magnetic resonance imaging |
container_volume | 11 |
creator | McGee, Kiaran P. Manduca, Armando Felmlee, Joel P. Riederer, Stephen J. Ehman, Richard L. |
description | Magnetic resonance (MR) imaging of the shoulder necessitates high spatial and contrast resolution resulting in long acquisition times, predisposing these images to degradation due to motion. Autocorrection is a new motion correction algorithm that attempts to deduce motion during imaging by calculating a metric that reflects image quality and searching for motion values that optimize this metric. The purpose of this work is to report on the evaluation of 24 metrics for use in autocorrection of MR images of the rotator cuff. Raw data from 164 clinical coronal rotator cuff exams acquired with interleaved navigator echoes were used. Four observers then scored the original and corrected images based on the presence of any motion‐induced artifacts. Changes in metric values before and after navigator‐based adaptive motion correction were correlated with changes in observer score using a least‐squares linear regression model. Based on this analysis, the metric that exhibited the strongest relationship with observer ratings of MR shoulder images was the entropy of the one‐dimensional gradient along the phase‐encoding direction. We speculate (and show preliminary evidence) that this metric will be useful not only for autocorrection of shoulder MR images but also for autocorrection of other MR exams. J. Magn. Reson. Imaging 2000;11:174–181. © 2000 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/(SICI)1522-2586(200002)11:2<174::AID-JMRI15>3.0.CO;2-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70956223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70956223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4835-fe089486ec79bc3bca62e60d867aedc452769eacc2ae4d43e94a669448daecdf3</originalsourceid><addsrcrecordid>eNqFkNtu00AQQC0EoqXwC8hPKHlwuvf1BlQpcqC4Ko3EtRIPo816jFzsuHgdQf6-6zpqK4HEPuxlZvbM6ETRCSUzSgg7nnzKs3xKJWMJk6maMBIWm1I6Z2-oFvP5Il8mZx8-5lSe8BmZZavXLOGPosO7L4_DnUie0JTog-iZ91eBYIyQT6MDSjTlRtLD6Hve2B8YN9h3lUvW1mMRu7br0PVVu4kni23f3r-ncVvGTXubwrIMQT-PFxtb73zlh1z1gOafR09KW3t8sT-Poi_v3n7O3ifnq9M8W5wnTqRcJiWS1IhUodNm7fjaWcVQkSJV2mLhhGRaGbTOMYuiEByNsEoZIdLCoitKfhS9GrnXXftri76HpvIO69pusN160MRIxRgPhV_HQte13ndYwnUXJu52QAkM2gEG7TA4hMEhjNqBUgibFgBBO4zagQOBbBUSA_jlfoLtusHiAXb0HAoux4LfVY27v9r-p-s_m-4jAZ2M6Mr3-OcObbufoDTXEr5dnMLZJb9YGqphyW8AlO2tzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70956223</pqid></control><display><type>article</type><title>Image metric-based correction (Autocorrection) of motion effects: Analysis of image metrics</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>McGee, Kiaran P. ; Manduca, Armando ; Felmlee, Joel P. ; Riederer, Stephen J. ; Ehman, Richard L.</creator><creatorcontrib>McGee, Kiaran P. ; Manduca, Armando ; Felmlee, Joel P. ; Riederer, Stephen J. ; Ehman, Richard L.</creatorcontrib><description>Magnetic resonance (MR) imaging of the shoulder necessitates high spatial and contrast resolution resulting in long acquisition times, predisposing these images to degradation due to motion. Autocorrection is a new motion correction algorithm that attempts to deduce motion during imaging by calculating a metric that reflects image quality and searching for motion values that optimize this metric. The purpose of this work is to report on the evaluation of 24 metrics for use in autocorrection of MR images of the rotator cuff. Raw data from 164 clinical coronal rotator cuff exams acquired with interleaved navigator echoes were used. Four observers then scored the original and corrected images based on the presence of any motion‐induced artifacts. Changes in metric values before and after navigator‐based adaptive motion correction were correlated with changes in observer score using a least‐squares linear regression model. Based on this analysis, the metric that exhibited the strongest relationship with observer ratings of MR shoulder images was the entropy of the one‐dimensional gradient along the phase‐encoding direction. We speculate (and show preliminary evidence) that this metric will be useful not only for autocorrection of shoulder MR images but also for autocorrection of other MR exams. J. Magn. Reson. Imaging 2000;11:174–181. © 2000 Wiley‐Liss, Inc.</description><identifier>ISSN: 1053-1807</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/(SICI)1522-2586(200002)11:2<174::AID-JMRI15>3.0.CO;2-3</identifier><identifier>PMID: 10713951</identifier><language>eng</language><publisher>New York: John Wiley & Sons, Inc</publisher><subject>Algorithms ; autocorrection ; Humans ; Image Processing, Computer-Assisted ; Magnetic Resonance Imaging - methods ; Motion ; motion reduction ; post-processing ; Rotator Cuff - pathology ; Shoulder - pathology</subject><ispartof>Journal of magnetic resonance imaging, 2000-02, Vol.11 (2), p.174-181</ispartof><rights>Copyright © 2000 Wiley‐Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4835-fe089486ec79bc3bca62e60d867aedc452769eacc2ae4d43e94a669448daecdf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F%28SICI%291522-2586%28200002%2911%3A2%3C174%3A%3AAID-JMRI15%3E3.0.CO%3B2-3$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F%28SICI%291522-2586%28200002%2911%3A2%3C174%3A%3AAID-JMRI15%3E3.0.CO%3B2-3$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10713951$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McGee, Kiaran P.</creatorcontrib><creatorcontrib>Manduca, Armando</creatorcontrib><creatorcontrib>Felmlee, Joel P.</creatorcontrib><creatorcontrib>Riederer, Stephen J.</creatorcontrib><creatorcontrib>Ehman, Richard L.</creatorcontrib><title>Image metric-based correction (Autocorrection) of motion effects: Analysis of image metrics</title><title>Journal of magnetic resonance imaging</title><addtitle>J. Magn. Reson. Imaging</addtitle><description>Magnetic resonance (MR) imaging of the shoulder necessitates high spatial and contrast resolution resulting in long acquisition times, predisposing these images to degradation due to motion. Autocorrection is a new motion correction algorithm that attempts to deduce motion during imaging by calculating a metric that reflects image quality and searching for motion values that optimize this metric. The purpose of this work is to report on the evaluation of 24 metrics for use in autocorrection of MR images of the rotator cuff. Raw data from 164 clinical coronal rotator cuff exams acquired with interleaved navigator echoes were used. Four observers then scored the original and corrected images based on the presence of any motion‐induced artifacts. Changes in metric values before and after navigator‐based adaptive motion correction were correlated with changes in observer score using a least‐squares linear regression model. Based on this analysis, the metric that exhibited the strongest relationship with observer ratings of MR shoulder images was the entropy of the one‐dimensional gradient along the phase‐encoding direction. We speculate (and show preliminary evidence) that this metric will be useful not only for autocorrection of shoulder MR images but also for autocorrection of other MR exams. J. Magn. Reson. Imaging 2000;11:174–181. © 2000 Wiley‐Liss, Inc.</description><subject>Algorithms</subject><subject>autocorrection</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Motion</subject><subject>motion reduction</subject><subject>post-processing</subject><subject>Rotator Cuff - pathology</subject><subject>Shoulder - pathology</subject><issn>1053-1807</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkNtu00AQQC0EoqXwC8hPKHlwuvf1BlQpcqC4Ko3EtRIPo816jFzsuHgdQf6-6zpqK4HEPuxlZvbM6ETRCSUzSgg7nnzKs3xKJWMJk6maMBIWm1I6Z2-oFvP5Il8mZx8-5lSe8BmZZavXLOGPosO7L4_DnUie0JTog-iZ91eBYIyQT6MDSjTlRtLD6Hve2B8YN9h3lUvW1mMRu7br0PVVu4kni23f3r-ncVvGTXubwrIMQT-PFxtb73zlh1z1gOafR09KW3t8sT-Poi_v3n7O3ifnq9M8W5wnTqRcJiWS1IhUodNm7fjaWcVQkSJV2mLhhGRaGbTOMYuiEByNsEoZIdLCoitKfhS9GrnXXftri76HpvIO69pusN160MRIxRgPhV_HQte13ndYwnUXJu52QAkM2gEG7TA4hMEhjNqBUgibFgBBO4zagQOBbBUSA_jlfoLtusHiAXb0HAoux4LfVY27v9r-p-s_m-4jAZ2M6Mr3-OcObbufoDTXEr5dnMLZJb9YGqphyW8AlO2tzA</recordid><startdate>200002</startdate><enddate>200002</enddate><creator>McGee, Kiaran P.</creator><creator>Manduca, Armando</creator><creator>Felmlee, Joel P.</creator><creator>Riederer, Stephen J.</creator><creator>Ehman, Richard L.</creator><general>John Wiley & Sons, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200002</creationdate><title>Image metric-based correction (Autocorrection) of motion effects: Analysis of image metrics</title><author>McGee, Kiaran P. ; Manduca, Armando ; Felmlee, Joel P. ; Riederer, Stephen J. ; Ehman, Richard L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4835-fe089486ec79bc3bca62e60d867aedc452769eacc2ae4d43e94a669448daecdf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algorithms</topic><topic>autocorrection</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Motion</topic><topic>motion reduction</topic><topic>post-processing</topic><topic>Rotator Cuff - pathology</topic><topic>Shoulder - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McGee, Kiaran P.</creatorcontrib><creatorcontrib>Manduca, Armando</creatorcontrib><creatorcontrib>Felmlee, Joel P.</creatorcontrib><creatorcontrib>Riederer, Stephen J.</creatorcontrib><creatorcontrib>Ehman, Richard L.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McGee, Kiaran P.</au><au>Manduca, Armando</au><au>Felmlee, Joel P.</au><au>Riederer, Stephen J.</au><au>Ehman, Richard L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image metric-based correction (Autocorrection) of motion effects: Analysis of image metrics</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J. Magn. Reson. Imaging</addtitle><date>2000-02</date><risdate>2000</risdate><volume>11</volume><issue>2</issue><spage>174</spage><epage>181</epage><pages>174-181</pages><issn>1053-1807</issn><eissn>1522-2586</eissn><abstract>Magnetic resonance (MR) imaging of the shoulder necessitates high spatial and contrast resolution resulting in long acquisition times, predisposing these images to degradation due to motion. Autocorrection is a new motion correction algorithm that attempts to deduce motion during imaging by calculating a metric that reflects image quality and searching for motion values that optimize this metric. The purpose of this work is to report on the evaluation of 24 metrics for use in autocorrection of MR images of the rotator cuff. Raw data from 164 clinical coronal rotator cuff exams acquired with interleaved navigator echoes were used. Four observers then scored the original and corrected images based on the presence of any motion‐induced artifacts. Changes in metric values before and after navigator‐based adaptive motion correction were correlated with changes in observer score using a least‐squares linear regression model. Based on this analysis, the metric that exhibited the strongest relationship with observer ratings of MR shoulder images was the entropy of the one‐dimensional gradient along the phase‐encoding direction. We speculate (and show preliminary evidence) that this metric will be useful not only for autocorrection of shoulder MR images but also for autocorrection of other MR exams. J. Magn. Reson. Imaging 2000;11:174–181. © 2000 Wiley‐Liss, Inc.</abstract><cop>New York</cop><pub>John Wiley & Sons, Inc</pub><pmid>10713951</pmid><doi>10.1002/(SICI)1522-2586(200002)11:2<174::AID-JMRI15>3.0.CO;2-3</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-1807 |
ispartof | Journal of magnetic resonance imaging, 2000-02, Vol.11 (2), p.174-181 |
issn | 1053-1807 1522-2586 |
language | eng |
recordid | cdi_proquest_miscellaneous_70956223 |
source | Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms autocorrection Humans Image Processing, Computer-Assisted Magnetic Resonance Imaging - methods Motion motion reduction post-processing Rotator Cuff - pathology Shoulder - pathology |
title | Image metric-based correction (Autocorrection) of motion effects: Analysis of image metrics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T19%3A04%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20metric-based%20correction%20(Autocorrection)%20of%20motion%20effects:%20Analysis%20of%20image%20metrics&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=McGee,%20Kiaran%20P.&rft.date=2000-02&rft.volume=11&rft.issue=2&rft.spage=174&rft.epage=181&rft.pages=174-181&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/(SICI)1522-2586(200002)11:2%3C174::AID-JMRI15%3E3.0.CO;2-3&rft_dat=%3Cproquest_cross%3E70956223%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70956223&rft_id=info:pmid/10713951&rfr_iscdi=true |