Image metric-based correction (Autocorrection) of motion effects: Analysis of image metrics

Magnetic resonance (MR) imaging of the shoulder necessitates high spatial and contrast resolution resulting in long acquisition times, predisposing these images to degradation due to motion. Autocorrection is a new motion correction algorithm that attempts to deduce motion during imaging by calculat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetic resonance imaging 2000-02, Vol.11 (2), p.174-181
Hauptverfasser: McGee, Kiaran P., Manduca, Armando, Felmlee, Joel P., Riederer, Stephen J., Ehman, Richard L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 181
container_issue 2
container_start_page 174
container_title Journal of magnetic resonance imaging
container_volume 11
creator McGee, Kiaran P.
Manduca, Armando
Felmlee, Joel P.
Riederer, Stephen J.
Ehman, Richard L.
description Magnetic resonance (MR) imaging of the shoulder necessitates high spatial and contrast resolution resulting in long acquisition times, predisposing these images to degradation due to motion. Autocorrection is a new motion correction algorithm that attempts to deduce motion during imaging by calculating a metric that reflects image quality and searching for motion values that optimize this metric. The purpose of this work is to report on the evaluation of 24 metrics for use in autocorrection of MR images of the rotator cuff. Raw data from 164 clinical coronal rotator cuff exams acquired with interleaved navigator echoes were used. Four observers then scored the original and corrected images based on the presence of any motion‐induced artifacts. Changes in metric values before and after navigator‐based adaptive motion correction were correlated with changes in observer score using a least‐squares linear regression model. Based on this analysis, the metric that exhibited the strongest relationship with observer ratings of MR shoulder images was the entropy of the one‐dimensional gradient along the phase‐encoding direction. We speculate (and show preliminary evidence) that this metric will be useful not only for autocorrection of shoulder MR images but also for autocorrection of other MR exams. J. Magn. Reson. Imaging 2000;11:174–181. © 2000 Wiley‐Liss, Inc.
doi_str_mv 10.1002/(SICI)1522-2586(200002)11:2<174::AID-JMRI15>3.0.CO;2-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70956223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70956223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4835-fe089486ec79bc3bca62e60d867aedc452769eacc2ae4d43e94a669448daecdf3</originalsourceid><addsrcrecordid>eNqFkNtu00AQQC0EoqXwC8hPKHlwuvf1BlQpcqC4Ko3EtRIPo816jFzsuHgdQf6-6zpqK4HEPuxlZvbM6ETRCSUzSgg7nnzKs3xKJWMJk6maMBIWm1I6Z2-oFvP5Il8mZx8-5lSe8BmZZavXLOGPosO7L4_DnUie0JTog-iZ91eBYIyQT6MDSjTlRtLD6Hve2B8YN9h3lUvW1mMRu7br0PVVu4kni23f3r-ncVvGTXubwrIMQT-PFxtb73zlh1z1gOafR09KW3t8sT-Poi_v3n7O3ifnq9M8W5wnTqRcJiWS1IhUodNm7fjaWcVQkSJV2mLhhGRaGbTOMYuiEByNsEoZIdLCoitKfhS9GrnXXftri76HpvIO69pusN160MRIxRgPhV_HQte13ndYwnUXJu52QAkM2gEG7TA4hMEhjNqBUgibFgBBO4zagQOBbBUSA_jlfoLtusHiAXb0HAoux4LfVY27v9r-p-s_m-4jAZ2M6Mr3-OcObbufoDTXEr5dnMLZJb9YGqphyW8AlO2tzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70956223</pqid></control><display><type>article</type><title>Image metric-based correction (Autocorrection) of motion effects: Analysis of image metrics</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>McGee, Kiaran P. ; Manduca, Armando ; Felmlee, Joel P. ; Riederer, Stephen J. ; Ehman, Richard L.</creator><creatorcontrib>McGee, Kiaran P. ; Manduca, Armando ; Felmlee, Joel P. ; Riederer, Stephen J. ; Ehman, Richard L.</creatorcontrib><description>Magnetic resonance (MR) imaging of the shoulder necessitates high spatial and contrast resolution resulting in long acquisition times, predisposing these images to degradation due to motion. Autocorrection is a new motion correction algorithm that attempts to deduce motion during imaging by calculating a metric that reflects image quality and searching for motion values that optimize this metric. The purpose of this work is to report on the evaluation of 24 metrics for use in autocorrection of MR images of the rotator cuff. Raw data from 164 clinical coronal rotator cuff exams acquired with interleaved navigator echoes were used. Four observers then scored the original and corrected images based on the presence of any motion‐induced artifacts. Changes in metric values before and after navigator‐based adaptive motion correction were correlated with changes in observer score using a least‐squares linear regression model. Based on this analysis, the metric that exhibited the strongest relationship with observer ratings of MR shoulder images was the entropy of the one‐dimensional gradient along the phase‐encoding direction. We speculate (and show preliminary evidence) that this metric will be useful not only for autocorrection of shoulder MR images but also for autocorrection of other MR exams. J. Magn. Reson. Imaging 2000;11:174–181. © 2000 Wiley‐Liss, Inc.</description><identifier>ISSN: 1053-1807</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/(SICI)1522-2586(200002)11:2&lt;174::AID-JMRI15&gt;3.0.CO;2-3</identifier><identifier>PMID: 10713951</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; autocorrection ; Humans ; Image Processing, Computer-Assisted ; Magnetic Resonance Imaging - methods ; Motion ; motion reduction ; post-processing ; Rotator Cuff - pathology ; Shoulder - pathology</subject><ispartof>Journal of magnetic resonance imaging, 2000-02, Vol.11 (2), p.174-181</ispartof><rights>Copyright © 2000 Wiley‐Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4835-fe089486ec79bc3bca62e60d867aedc452769eacc2ae4d43e94a669448daecdf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F%28SICI%291522-2586%28200002%2911%3A2%3C174%3A%3AAID-JMRI15%3E3.0.CO%3B2-3$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F%28SICI%291522-2586%28200002%2911%3A2%3C174%3A%3AAID-JMRI15%3E3.0.CO%3B2-3$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10713951$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McGee, Kiaran P.</creatorcontrib><creatorcontrib>Manduca, Armando</creatorcontrib><creatorcontrib>Felmlee, Joel P.</creatorcontrib><creatorcontrib>Riederer, Stephen J.</creatorcontrib><creatorcontrib>Ehman, Richard L.</creatorcontrib><title>Image metric-based correction (Autocorrection) of motion effects: Analysis of image metrics</title><title>Journal of magnetic resonance imaging</title><addtitle>J. Magn. Reson. Imaging</addtitle><description>Magnetic resonance (MR) imaging of the shoulder necessitates high spatial and contrast resolution resulting in long acquisition times, predisposing these images to degradation due to motion. Autocorrection is a new motion correction algorithm that attempts to deduce motion during imaging by calculating a metric that reflects image quality and searching for motion values that optimize this metric. The purpose of this work is to report on the evaluation of 24 metrics for use in autocorrection of MR images of the rotator cuff. Raw data from 164 clinical coronal rotator cuff exams acquired with interleaved navigator echoes were used. Four observers then scored the original and corrected images based on the presence of any motion‐induced artifacts. Changes in metric values before and after navigator‐based adaptive motion correction were correlated with changes in observer score using a least‐squares linear regression model. Based on this analysis, the metric that exhibited the strongest relationship with observer ratings of MR shoulder images was the entropy of the one‐dimensional gradient along the phase‐encoding direction. We speculate (and show preliminary evidence) that this metric will be useful not only for autocorrection of shoulder MR images but also for autocorrection of other MR exams. J. Magn. Reson. Imaging 2000;11:174–181. © 2000 Wiley‐Liss, Inc.</description><subject>Algorithms</subject><subject>autocorrection</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Motion</subject><subject>motion reduction</subject><subject>post-processing</subject><subject>Rotator Cuff - pathology</subject><subject>Shoulder - pathology</subject><issn>1053-1807</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkNtu00AQQC0EoqXwC8hPKHlwuvf1BlQpcqC4Ko3EtRIPo816jFzsuHgdQf6-6zpqK4HEPuxlZvbM6ETRCSUzSgg7nnzKs3xKJWMJk6maMBIWm1I6Z2-oFvP5Il8mZx8-5lSe8BmZZavXLOGPosO7L4_DnUie0JTog-iZ91eBYIyQT6MDSjTlRtLD6Hve2B8YN9h3lUvW1mMRu7br0PVVu4kni23f3r-ncVvGTXubwrIMQT-PFxtb73zlh1z1gOafR09KW3t8sT-Poi_v3n7O3ifnq9M8W5wnTqRcJiWS1IhUodNm7fjaWcVQkSJV2mLhhGRaGbTOMYuiEByNsEoZIdLCoitKfhS9GrnXXftri76HpvIO69pusN160MRIxRgPhV_HQte13ndYwnUXJu52QAkM2gEG7TA4hMEhjNqBUgibFgBBO4zagQOBbBUSA_jlfoLtusHiAXb0HAoux4LfVY27v9r-p-s_m-4jAZ2M6Mr3-OcObbufoDTXEr5dnMLZJb9YGqphyW8AlO2tzA</recordid><startdate>200002</startdate><enddate>200002</enddate><creator>McGee, Kiaran P.</creator><creator>Manduca, Armando</creator><creator>Felmlee, Joel P.</creator><creator>Riederer, Stephen J.</creator><creator>Ehman, Richard L.</creator><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200002</creationdate><title>Image metric-based correction (Autocorrection) of motion effects: Analysis of image metrics</title><author>McGee, Kiaran P. ; Manduca, Armando ; Felmlee, Joel P. ; Riederer, Stephen J. ; Ehman, Richard L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4835-fe089486ec79bc3bca62e60d867aedc452769eacc2ae4d43e94a669448daecdf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algorithms</topic><topic>autocorrection</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Motion</topic><topic>motion reduction</topic><topic>post-processing</topic><topic>Rotator Cuff - pathology</topic><topic>Shoulder - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McGee, Kiaran P.</creatorcontrib><creatorcontrib>Manduca, Armando</creatorcontrib><creatorcontrib>Felmlee, Joel P.</creatorcontrib><creatorcontrib>Riederer, Stephen J.</creatorcontrib><creatorcontrib>Ehman, Richard L.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McGee, Kiaran P.</au><au>Manduca, Armando</au><au>Felmlee, Joel P.</au><au>Riederer, Stephen J.</au><au>Ehman, Richard L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image metric-based correction (Autocorrection) of motion effects: Analysis of image metrics</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J. Magn. Reson. Imaging</addtitle><date>2000-02</date><risdate>2000</risdate><volume>11</volume><issue>2</issue><spage>174</spage><epage>181</epage><pages>174-181</pages><issn>1053-1807</issn><eissn>1522-2586</eissn><abstract>Magnetic resonance (MR) imaging of the shoulder necessitates high spatial and contrast resolution resulting in long acquisition times, predisposing these images to degradation due to motion. Autocorrection is a new motion correction algorithm that attempts to deduce motion during imaging by calculating a metric that reflects image quality and searching for motion values that optimize this metric. The purpose of this work is to report on the evaluation of 24 metrics for use in autocorrection of MR images of the rotator cuff. Raw data from 164 clinical coronal rotator cuff exams acquired with interleaved navigator echoes were used. Four observers then scored the original and corrected images based on the presence of any motion‐induced artifacts. Changes in metric values before and after navigator‐based adaptive motion correction were correlated with changes in observer score using a least‐squares linear regression model. Based on this analysis, the metric that exhibited the strongest relationship with observer ratings of MR shoulder images was the entropy of the one‐dimensional gradient along the phase‐encoding direction. We speculate (and show preliminary evidence) that this metric will be useful not only for autocorrection of shoulder MR images but also for autocorrection of other MR exams. J. Magn. Reson. Imaging 2000;11:174–181. © 2000 Wiley‐Liss, Inc.</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>10713951</pmid><doi>10.1002/(SICI)1522-2586(200002)11:2&lt;174::AID-JMRI15&gt;3.0.CO;2-3</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-1807
ispartof Journal of magnetic resonance imaging, 2000-02, Vol.11 (2), p.174-181
issn 1053-1807
1522-2586
language eng
recordid cdi_proquest_miscellaneous_70956223
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Algorithms
autocorrection
Humans
Image Processing, Computer-Assisted
Magnetic Resonance Imaging - methods
Motion
motion reduction
post-processing
Rotator Cuff - pathology
Shoulder - pathology
title Image metric-based correction (Autocorrection) of motion effects: Analysis of image metrics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T19%3A04%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20metric-based%20correction%20(Autocorrection)%20of%20motion%20effects:%20Analysis%20of%20image%20metrics&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=McGee,%20Kiaran%20P.&rft.date=2000-02&rft.volume=11&rft.issue=2&rft.spage=174&rft.epage=181&rft.pages=174-181&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/(SICI)1522-2586(200002)11:2%3C174::AID-JMRI15%3E3.0.CO;2-3&rft_dat=%3Cproquest_cross%3E70956223%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70956223&rft_id=info:pmid/10713951&rfr_iscdi=true