Ultrasonic Lamb wave diffraction tomography
Ultrasonic guided waves, Lamb waves, allow large sections of aircraft structures to be rapidly inspected. Unlike conventional ultrasonic C-scan imaging that requires access to the whole inspected area, tomographic algorithms work with data collected over the perimeter. Because the velocity of Lamb w...
Gespeichert in:
Veröffentlicht in: | Ultrasonics 2001-06, Vol.39 (4), p.269-281 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 281 |
---|---|
container_issue | 4 |
container_start_page | 269 |
container_title | Ultrasonics |
container_volume | 39 |
creator | Malyarenko, Eugene V Hinders, Mark K |
description | Ultrasonic guided waves, Lamb waves, allow large sections of aircraft structures to be rapidly inspected. Unlike conventional ultrasonic C-scan imaging that requires access to the whole inspected area, tomographic algorithms work with data collected over the perimeter. Because the velocity of Lamb waves depends on thickness the travel times of the fundamental modes can be converted into a thickness map of inspected region. Lamb waves cannot penetrate through holes and other strongly scattering defects and the assumption of straight wave paths, essential for many tomographic algorithms, fails. Diffraction tomography is a way to incorporate scattering effects into tomographic algorithms in order to improve image quality and resolution. This work describes the iterative reconstruction procedure developed for Lamb wave tomography and allowing for ray bending correction for imaging of moderately scattering objects. |
doi_str_mv | 10.1016/S0041-624X(01)00055-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70953257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0041624X01000555</els_id><sourcerecordid>70953257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-11ac53c747776a41caf5762d5cf9cace9066ef260e6215f47576dd87987410b33</originalsourceid><addsrcrecordid>eNqFkNtKw0AQhhdRbD08ghIQRJHoTrKH5EqkeIKCF1rwbtlOdnUlh7qbVvr2pm2ol17NxXz_P8NHyAnQa6Agbl4pZRCLhL1fULiklHIe8x0yhEyyOM9FtkuGW2RADkL4ohRYBuk-GQCwNGGpHJKrSdl6HZraYTTW1TT60QsTFc5ar7F1TR21TdV8eD37XB6RPavLYI77eUgmD_dvo6d4_PL4PLobx8g4b2MAjTxFyaSUQjNAbbkUScHR5qjR5FQIYxNBjUiAWya7bVFkMu8-BzpN00Nyvumd-eZ7bkKrKhfQlKWuTTMPStKcpwmXHcg3IPomBG-smnlXab9UQNXKklpbUisFioJaW1K8y532B-bTyhR_qV5LB5z1gA6oy85FjS5suVxmIlvV3G4o08lYOONVQGdqNIXzBltVNO6fR34B4HCCFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70953257</pqid></control><display><type>article</type><title>Ultrasonic Lamb wave diffraction tomography</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Malyarenko, Eugene V ; Hinders, Mark K</creator><creatorcontrib>Malyarenko, Eugene V ; Hinders, Mark K</creatorcontrib><description>Ultrasonic guided waves, Lamb waves, allow large sections of aircraft structures to be rapidly inspected. Unlike conventional ultrasonic C-scan imaging that requires access to the whole inspected area, tomographic algorithms work with data collected over the perimeter. Because the velocity of Lamb waves depends on thickness the travel times of the fundamental modes can be converted into a thickness map of inspected region. Lamb waves cannot penetrate through holes and other strongly scattering defects and the assumption of straight wave paths, essential for many tomographic algorithms, fails. Diffraction tomography is a way to incorporate scattering effects into tomographic algorithms in order to improve image quality and resolution. This work describes the iterative reconstruction procedure developed for Lamb wave tomography and allowing for ray bending correction for imaging of moderately scattering objects.</description><identifier>ISSN: 0041-624X</identifier><identifier>EISSN: 1874-9968</identifier><identifier>DOI: 10.1016/S0041-624X(01)00055-5</identifier><identifier>PMID: 11432437</identifier><identifier>CODEN: ULTRA3</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Acoustic signal processing ; Acoustical measurements and instrumentation ; Acoustics ; Aircraft ; Algorithms ; Cross-disciplinary physics: materials science; rheology ; Cross-hole ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Image Processing, Computer-Assisted ; Lamb waves ; Materials science ; Materials Testing ; Nondestructive testing: ultrasonic testing, photoacoustic testing ; Physics ; Ray tracing ; SIRT ; Tomography ; Ultrasonography - methods</subject><ispartof>Ultrasonics, 2001-06, Vol.39 (4), p.269-281</ispartof><rights>2001 Elsevier Science B.V.</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-11ac53c747776a41caf5762d5cf9cace9066ef260e6215f47576dd87987410b33</citedby><cites>FETCH-LOGICAL-c455t-11ac53c747776a41caf5762d5cf9cace9066ef260e6215f47576dd87987410b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0041-624X(01)00055-5$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=978685$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11432437$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Malyarenko, Eugene V</creatorcontrib><creatorcontrib>Hinders, Mark K</creatorcontrib><title>Ultrasonic Lamb wave diffraction tomography</title><title>Ultrasonics</title><addtitle>Ultrasonics</addtitle><description>Ultrasonic guided waves, Lamb waves, allow large sections of aircraft structures to be rapidly inspected. Unlike conventional ultrasonic C-scan imaging that requires access to the whole inspected area, tomographic algorithms work with data collected over the perimeter. Because the velocity of Lamb waves depends on thickness the travel times of the fundamental modes can be converted into a thickness map of inspected region. Lamb waves cannot penetrate through holes and other strongly scattering defects and the assumption of straight wave paths, essential for many tomographic algorithms, fails. Diffraction tomography is a way to incorporate scattering effects into tomographic algorithms in order to improve image quality and resolution. This work describes the iterative reconstruction procedure developed for Lamb wave tomography and allowing for ray bending correction for imaging of moderately scattering objects.</description><subject>Acoustic signal processing</subject><subject>Acoustical measurements and instrumentation</subject><subject>Acoustics</subject><subject>Aircraft</subject><subject>Algorithms</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Cross-hole</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Image Processing, Computer-Assisted</subject><subject>Lamb waves</subject><subject>Materials science</subject><subject>Materials Testing</subject><subject>Nondestructive testing: ultrasonic testing, photoacoustic testing</subject><subject>Physics</subject><subject>Ray tracing</subject><subject>SIRT</subject><subject>Tomography</subject><subject>Ultrasonography - methods</subject><issn>0041-624X</issn><issn>1874-9968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkNtKw0AQhhdRbD08ghIQRJHoTrKH5EqkeIKCF1rwbtlOdnUlh7qbVvr2pm2ol17NxXz_P8NHyAnQa6Agbl4pZRCLhL1fULiklHIe8x0yhEyyOM9FtkuGW2RADkL4ohRYBuk-GQCwNGGpHJKrSdl6HZraYTTW1TT60QsTFc5ar7F1TR21TdV8eD37XB6RPavLYI77eUgmD_dvo6d4_PL4PLobx8g4b2MAjTxFyaSUQjNAbbkUScHR5qjR5FQIYxNBjUiAWya7bVFkMu8-BzpN00Nyvumd-eZ7bkKrKhfQlKWuTTMPStKcpwmXHcg3IPomBG-smnlXab9UQNXKklpbUisFioJaW1K8y532B-bTyhR_qV5LB5z1gA6oy85FjS5suVxmIlvV3G4o08lYOONVQGdqNIXzBltVNO6fR34B4HCCFw</recordid><startdate>20010601</startdate><enddate>20010601</enddate><creator>Malyarenko, Eugene V</creator><creator>Hinders, Mark K</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20010601</creationdate><title>Ultrasonic Lamb wave diffraction tomography</title><author>Malyarenko, Eugene V ; Hinders, Mark K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-11ac53c747776a41caf5762d5cf9cace9066ef260e6215f47576dd87987410b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Acoustic signal processing</topic><topic>Acoustical measurements and instrumentation</topic><topic>Acoustics</topic><topic>Aircraft</topic><topic>Algorithms</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Cross-hole</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Image Processing, Computer-Assisted</topic><topic>Lamb waves</topic><topic>Materials science</topic><topic>Materials Testing</topic><topic>Nondestructive testing: ultrasonic testing, photoacoustic testing</topic><topic>Physics</topic><topic>Ray tracing</topic><topic>SIRT</topic><topic>Tomography</topic><topic>Ultrasonography - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malyarenko, Eugene V</creatorcontrib><creatorcontrib>Hinders, Mark K</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Ultrasonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malyarenko, Eugene V</au><au>Hinders, Mark K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrasonic Lamb wave diffraction tomography</atitle><jtitle>Ultrasonics</jtitle><addtitle>Ultrasonics</addtitle><date>2001-06-01</date><risdate>2001</risdate><volume>39</volume><issue>4</issue><spage>269</spage><epage>281</epage><pages>269-281</pages><issn>0041-624X</issn><eissn>1874-9968</eissn><coden>ULTRA3</coden><abstract>Ultrasonic guided waves, Lamb waves, allow large sections of aircraft structures to be rapidly inspected. Unlike conventional ultrasonic C-scan imaging that requires access to the whole inspected area, tomographic algorithms work with data collected over the perimeter. Because the velocity of Lamb waves depends on thickness the travel times of the fundamental modes can be converted into a thickness map of inspected region. Lamb waves cannot penetrate through holes and other strongly scattering defects and the assumption of straight wave paths, essential for many tomographic algorithms, fails. Diffraction tomography is a way to incorporate scattering effects into tomographic algorithms in order to improve image quality and resolution. This work describes the iterative reconstruction procedure developed for Lamb wave tomography and allowing for ray bending correction for imaging of moderately scattering objects.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>11432437</pmid><doi>10.1016/S0041-624X(01)00055-5</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0041-624X |
ispartof | Ultrasonics, 2001-06, Vol.39 (4), p.269-281 |
issn | 0041-624X 1874-9968 |
language | eng |
recordid | cdi_proquest_miscellaneous_70953257 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Acoustic signal processing Acoustical measurements and instrumentation Acoustics Aircraft Algorithms Cross-disciplinary physics: materials science rheology Cross-hole Exact sciences and technology Fundamental areas of phenomenology (including applications) Image Processing, Computer-Assisted Lamb waves Materials science Materials Testing Nondestructive testing: ultrasonic testing, photoacoustic testing Physics Ray tracing SIRT Tomography Ultrasonography - methods |
title | Ultrasonic Lamb wave diffraction tomography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T02%3A00%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrasonic%20Lamb%20wave%20diffraction%20tomography&rft.jtitle=Ultrasonics&rft.au=Malyarenko,%20Eugene%20V&rft.date=2001-06-01&rft.volume=39&rft.issue=4&rft.spage=269&rft.epage=281&rft.pages=269-281&rft.issn=0041-624X&rft.eissn=1874-9968&rft.coden=ULTRA3&rft_id=info:doi/10.1016/S0041-624X(01)00055-5&rft_dat=%3Cproquest_cross%3E70953257%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70953257&rft_id=info:pmid/11432437&rft_els_id=S0041624X01000555&rfr_iscdi=true |