Ultrasonic Lamb wave diffraction tomography

Ultrasonic guided waves, Lamb waves, allow large sections of aircraft structures to be rapidly inspected. Unlike conventional ultrasonic C-scan imaging that requires access to the whole inspected area, tomographic algorithms work with data collected over the perimeter. Because the velocity of Lamb w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ultrasonics 2001-06, Vol.39 (4), p.269-281
Hauptverfasser: Malyarenko, Eugene V, Hinders, Mark K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 281
container_issue 4
container_start_page 269
container_title Ultrasonics
container_volume 39
creator Malyarenko, Eugene V
Hinders, Mark K
description Ultrasonic guided waves, Lamb waves, allow large sections of aircraft structures to be rapidly inspected. Unlike conventional ultrasonic C-scan imaging that requires access to the whole inspected area, tomographic algorithms work with data collected over the perimeter. Because the velocity of Lamb waves depends on thickness the travel times of the fundamental modes can be converted into a thickness map of inspected region. Lamb waves cannot penetrate through holes and other strongly scattering defects and the assumption of straight wave paths, essential for many tomographic algorithms, fails. Diffraction tomography is a way to incorporate scattering effects into tomographic algorithms in order to improve image quality and resolution. This work describes the iterative reconstruction procedure developed for Lamb wave tomography and allowing for ray bending correction for imaging of moderately scattering objects.
doi_str_mv 10.1016/S0041-624X(01)00055-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70953257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0041624X01000555</els_id><sourcerecordid>70953257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-11ac53c747776a41caf5762d5cf9cace9066ef260e6215f47576dd87987410b33</originalsourceid><addsrcrecordid>eNqFkNtKw0AQhhdRbD08ghIQRJHoTrKH5EqkeIKCF1rwbtlOdnUlh7qbVvr2pm2ol17NxXz_P8NHyAnQa6Agbl4pZRCLhL1fULiklHIe8x0yhEyyOM9FtkuGW2RADkL4ohRYBuk-GQCwNGGpHJKrSdl6HZraYTTW1TT60QsTFc5ar7F1TR21TdV8eD37XB6RPavLYI77eUgmD_dvo6d4_PL4PLobx8g4b2MAjTxFyaSUQjNAbbkUScHR5qjR5FQIYxNBjUiAWya7bVFkMu8-BzpN00Nyvumd-eZ7bkKrKhfQlKWuTTMPStKcpwmXHcg3IPomBG-smnlXab9UQNXKklpbUisFioJaW1K8y532B-bTyhR_qV5LB5z1gA6oy85FjS5suVxmIlvV3G4o08lYOONVQGdqNIXzBltVNO6fR34B4HCCFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70953257</pqid></control><display><type>article</type><title>Ultrasonic Lamb wave diffraction tomography</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Malyarenko, Eugene V ; Hinders, Mark K</creator><creatorcontrib>Malyarenko, Eugene V ; Hinders, Mark K</creatorcontrib><description>Ultrasonic guided waves, Lamb waves, allow large sections of aircraft structures to be rapidly inspected. Unlike conventional ultrasonic C-scan imaging that requires access to the whole inspected area, tomographic algorithms work with data collected over the perimeter. Because the velocity of Lamb waves depends on thickness the travel times of the fundamental modes can be converted into a thickness map of inspected region. Lamb waves cannot penetrate through holes and other strongly scattering defects and the assumption of straight wave paths, essential for many tomographic algorithms, fails. Diffraction tomography is a way to incorporate scattering effects into tomographic algorithms in order to improve image quality and resolution. This work describes the iterative reconstruction procedure developed for Lamb wave tomography and allowing for ray bending correction for imaging of moderately scattering objects.</description><identifier>ISSN: 0041-624X</identifier><identifier>EISSN: 1874-9968</identifier><identifier>DOI: 10.1016/S0041-624X(01)00055-5</identifier><identifier>PMID: 11432437</identifier><identifier>CODEN: ULTRA3</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Acoustic signal processing ; Acoustical measurements and instrumentation ; Acoustics ; Aircraft ; Algorithms ; Cross-disciplinary physics: materials science; rheology ; Cross-hole ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Image Processing, Computer-Assisted ; Lamb waves ; Materials science ; Materials Testing ; Nondestructive testing: ultrasonic testing, photoacoustic testing ; Physics ; Ray tracing ; SIRT ; Tomography ; Ultrasonography - methods</subject><ispartof>Ultrasonics, 2001-06, Vol.39 (4), p.269-281</ispartof><rights>2001 Elsevier Science B.V.</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-11ac53c747776a41caf5762d5cf9cace9066ef260e6215f47576dd87987410b33</citedby><cites>FETCH-LOGICAL-c455t-11ac53c747776a41caf5762d5cf9cace9066ef260e6215f47576dd87987410b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0041-624X(01)00055-5$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=978685$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11432437$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Malyarenko, Eugene V</creatorcontrib><creatorcontrib>Hinders, Mark K</creatorcontrib><title>Ultrasonic Lamb wave diffraction tomography</title><title>Ultrasonics</title><addtitle>Ultrasonics</addtitle><description>Ultrasonic guided waves, Lamb waves, allow large sections of aircraft structures to be rapidly inspected. Unlike conventional ultrasonic C-scan imaging that requires access to the whole inspected area, tomographic algorithms work with data collected over the perimeter. Because the velocity of Lamb waves depends on thickness the travel times of the fundamental modes can be converted into a thickness map of inspected region. Lamb waves cannot penetrate through holes and other strongly scattering defects and the assumption of straight wave paths, essential for many tomographic algorithms, fails. Diffraction tomography is a way to incorporate scattering effects into tomographic algorithms in order to improve image quality and resolution. This work describes the iterative reconstruction procedure developed for Lamb wave tomography and allowing for ray bending correction for imaging of moderately scattering objects.</description><subject>Acoustic signal processing</subject><subject>Acoustical measurements and instrumentation</subject><subject>Acoustics</subject><subject>Aircraft</subject><subject>Algorithms</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Cross-hole</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Image Processing, Computer-Assisted</subject><subject>Lamb waves</subject><subject>Materials science</subject><subject>Materials Testing</subject><subject>Nondestructive testing: ultrasonic testing, photoacoustic testing</subject><subject>Physics</subject><subject>Ray tracing</subject><subject>SIRT</subject><subject>Tomography</subject><subject>Ultrasonography - methods</subject><issn>0041-624X</issn><issn>1874-9968</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkNtKw0AQhhdRbD08ghIQRJHoTrKH5EqkeIKCF1rwbtlOdnUlh7qbVvr2pm2ol17NxXz_P8NHyAnQa6Agbl4pZRCLhL1fULiklHIe8x0yhEyyOM9FtkuGW2RADkL4ohRYBuk-GQCwNGGpHJKrSdl6HZraYTTW1TT60QsTFc5ar7F1TR21TdV8eD37XB6RPavLYI77eUgmD_dvo6d4_PL4PLobx8g4b2MAjTxFyaSUQjNAbbkUScHR5qjR5FQIYxNBjUiAWya7bVFkMu8-BzpN00Nyvumd-eZ7bkKrKhfQlKWuTTMPStKcpwmXHcg3IPomBG-smnlXab9UQNXKklpbUisFioJaW1K8y532B-bTyhR_qV5LB5z1gA6oy85FjS5suVxmIlvV3G4o08lYOONVQGdqNIXzBltVNO6fR34B4HCCFw</recordid><startdate>20010601</startdate><enddate>20010601</enddate><creator>Malyarenko, Eugene V</creator><creator>Hinders, Mark K</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20010601</creationdate><title>Ultrasonic Lamb wave diffraction tomography</title><author>Malyarenko, Eugene V ; Hinders, Mark K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-11ac53c747776a41caf5762d5cf9cace9066ef260e6215f47576dd87987410b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Acoustic signal processing</topic><topic>Acoustical measurements and instrumentation</topic><topic>Acoustics</topic><topic>Aircraft</topic><topic>Algorithms</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Cross-hole</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Image Processing, Computer-Assisted</topic><topic>Lamb waves</topic><topic>Materials science</topic><topic>Materials Testing</topic><topic>Nondestructive testing: ultrasonic testing, photoacoustic testing</topic><topic>Physics</topic><topic>Ray tracing</topic><topic>SIRT</topic><topic>Tomography</topic><topic>Ultrasonography - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malyarenko, Eugene V</creatorcontrib><creatorcontrib>Hinders, Mark K</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Ultrasonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malyarenko, Eugene V</au><au>Hinders, Mark K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrasonic Lamb wave diffraction tomography</atitle><jtitle>Ultrasonics</jtitle><addtitle>Ultrasonics</addtitle><date>2001-06-01</date><risdate>2001</risdate><volume>39</volume><issue>4</issue><spage>269</spage><epage>281</epage><pages>269-281</pages><issn>0041-624X</issn><eissn>1874-9968</eissn><coden>ULTRA3</coden><abstract>Ultrasonic guided waves, Lamb waves, allow large sections of aircraft structures to be rapidly inspected. Unlike conventional ultrasonic C-scan imaging that requires access to the whole inspected area, tomographic algorithms work with data collected over the perimeter. Because the velocity of Lamb waves depends on thickness the travel times of the fundamental modes can be converted into a thickness map of inspected region. Lamb waves cannot penetrate through holes and other strongly scattering defects and the assumption of straight wave paths, essential for many tomographic algorithms, fails. Diffraction tomography is a way to incorporate scattering effects into tomographic algorithms in order to improve image quality and resolution. This work describes the iterative reconstruction procedure developed for Lamb wave tomography and allowing for ray bending correction for imaging of moderately scattering objects.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>11432437</pmid><doi>10.1016/S0041-624X(01)00055-5</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0041-624X
ispartof Ultrasonics, 2001-06, Vol.39 (4), p.269-281
issn 0041-624X
1874-9968
language eng
recordid cdi_proquest_miscellaneous_70953257
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Acoustic signal processing
Acoustical measurements and instrumentation
Acoustics
Aircraft
Algorithms
Cross-disciplinary physics: materials science
rheology
Cross-hole
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Image Processing, Computer-Assisted
Lamb waves
Materials science
Materials Testing
Nondestructive testing: ultrasonic testing, photoacoustic testing
Physics
Ray tracing
SIRT
Tomography
Ultrasonography - methods
title Ultrasonic Lamb wave diffraction tomography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T02%3A00%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrasonic%20Lamb%20wave%20diffraction%20tomography&rft.jtitle=Ultrasonics&rft.au=Malyarenko,%20Eugene%20V&rft.date=2001-06-01&rft.volume=39&rft.issue=4&rft.spage=269&rft.epage=281&rft.pages=269-281&rft.issn=0041-624X&rft.eissn=1874-9968&rft.coden=ULTRA3&rft_id=info:doi/10.1016/S0041-624X(01)00055-5&rft_dat=%3Cproquest_cross%3E70953257%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70953257&rft_id=info:pmid/11432437&rft_els_id=S0041624X01000555&rfr_iscdi=true