Wall Stress Studies of Abdominal Aortic Aneurysm in a Clinical Model

To estimate when an abdominal aortic aneurysm (AAA) may rupture, it is necessary to understand the forces responsible for this event. We investigated the wall stresses in an AAA in a clinical model. Using CT scans of the AAA, the diameter and wall thickness were measured and the model of the aneurys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of vascular surgery 2001-05, Vol.15 (3), p.355-366
Hauptverfasser: Thubrikar, Mano J., Al-Soudi, Jihad, Robicsek, Francis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 366
container_issue 3
container_start_page 355
container_title Annals of vascular surgery
container_volume 15
creator Thubrikar, Mano J.
Al-Soudi, Jihad
Robicsek, Francis
description To estimate when an abdominal aortic aneurysm (AAA) may rupture, it is necessary to understand the forces responsible for this event. We investigated the wall stresses in an AAA in a clinical model. Using CT scans of the AAA, the diameter and wall thickness were measured and the model of the aneurysm was created. The wall stresses were determined using a finite element analysis in which the aorta was considered isotropic with linear material properties and was loaded with a pressure of 120 mmHg. The AAA was eccentric with a length of 10.5 cm, a diameter of 2.5 to 5.9 cm, and a wall thickness of 1.0 to 2.0 mm. The aneurysm had specific areas of high stress. On the inner surface the highest stress was 0.4 N/mm 2 and occurred along two circumferentially oriented belts—one at the bulb and the other just below. The stress was longitudinal at the anterior region of the bulb and circumferential elsewhere, suggesting that a rupture caused by this stress will result in a circumferential tear at the anterior portion of the bulb and a longitudinal tear elsewhere. In the mid-surface the highest stress was 0.37 N/mm 2 and occurred at two locations: the posterior region of the bulb and anteriorly just below. The stress was circumferential, suggesting that the rupture caused by this stress will produce a longitudinal tear. The location and orientation of the maximum stress were influenced more by the tethering force than by the wall thickness, luminal pressure, or wall stiffness. In conclusion, the rupture of an AAA is most likely to occur on the inner surface at the bulb. Such analytical approaches could lead to a better understanding of the aneurysm rupture and may be instrumental in planning surgical interventions.
doi_str_mv 10.1007/s100160010080
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70950119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0890509606621821</els_id><sourcerecordid>70950119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-73c7681bcebdec7943e15203e75cf8b2801be8d4a8f30d9e3762bd21558e4c833</originalsourceid><addsrcrecordid>eNp10E1LxDAQBuAgiruuHr1K8eCtmjRJkx7L-gkrHlQ8hjaZQpa00aQV9t8b2QVR8DCZQx5emBehU4IvCcbiKqaXlGkwlngPzUlJeM4rJvbRHMsK5xxX5QwdxbhOqJBMHqIZIYwwLOUcXb81zmXPY4AY05qMhZj5Lqtb43s7NC6rfRitzuoBprCJfWaHrMmWzg5Wp99Hb8Ado4OucRFOdnuBXm9vXpb3-erp7mFZr3JNSzbmgmpRStJqaA1oUTEKhBeYguC6k20hMWlBGtbIjmJTARVl0ZqCcC6BaUnpAl1sc9-D_5ggjqq3UYNzzQB-ikrgimNCqgTP_8C1n0K6JqqCMC7KUrKE8i3SwccYoFPvwfZN2CiC1Xe36le3yZ_tQqe2B_Ojd2UmILYAUgefFoKK2sKgwdgAelTG23-ivwBn5oNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214576684</pqid></control><display><type>article</type><title>Wall Stress Studies of Abdominal Aortic Aneurysm in a Clinical Model</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Elsevier ScienceDirect Journals</source><creator>Thubrikar, Mano J. ; Al-Soudi, Jihad ; Robicsek, Francis</creator><creatorcontrib>Thubrikar, Mano J. ; Al-Soudi, Jihad ; Robicsek, Francis</creatorcontrib><description>To estimate when an abdominal aortic aneurysm (AAA) may rupture, it is necessary to understand the forces responsible for this event. We investigated the wall stresses in an AAA in a clinical model. Using CT scans of the AAA, the diameter and wall thickness were measured and the model of the aneurysm was created. The wall stresses were determined using a finite element analysis in which the aorta was considered isotropic with linear material properties and was loaded with a pressure of 120 mmHg. The AAA was eccentric with a length of 10.5 cm, a diameter of 2.5 to 5.9 cm, and a wall thickness of 1.0 to 2.0 mm. The aneurysm had specific areas of high stress. On the inner surface the highest stress was 0.4 N/mm 2 and occurred along two circumferentially oriented belts—one at the bulb and the other just below. The stress was longitudinal at the anterior region of the bulb and circumferential elsewhere, suggesting that a rupture caused by this stress will result in a circumferential tear at the anterior portion of the bulb and a longitudinal tear elsewhere. In the mid-surface the highest stress was 0.37 N/mm 2 and occurred at two locations: the posterior region of the bulb and anteriorly just below. The stress was circumferential, suggesting that the rupture caused by this stress will produce a longitudinal tear. The location and orientation of the maximum stress were influenced more by the tethering force than by the wall thickness, luminal pressure, or wall stiffness. In conclusion, the rupture of an AAA is most likely to occur on the inner surface at the bulb. Such analytical approaches could lead to a better understanding of the aneurysm rupture and may be instrumental in planning surgical interventions.</description><identifier>ISSN: 0890-5096</identifier><identifier>EISSN: 1615-5947</identifier><identifier>DOI: 10.1007/s100160010080</identifier><identifier>PMID: 11414088</identifier><identifier>CODEN: AVSUEV</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>Aortic Aneurysm, Abdominal - physiopathology ; Humans ; Models, Cardiovascular ; Stress, Mechanical</subject><ispartof>Annals of vascular surgery, 2001-05, Vol.15 (3), p.355-366</ispartof><rights>2001 Annals of Vascular Surgery, Inc.</rights><rights>Copyright Quality Medical Publishing May 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-73c7681bcebdec7943e15203e75cf8b2801be8d4a8f30d9e3762bd21558e4c833</citedby><cites>FETCH-LOGICAL-c364t-73c7681bcebdec7943e15203e75cf8b2801be8d4a8f30d9e3762bd21558e4c833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0890509606621821$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11414088$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thubrikar, Mano J.</creatorcontrib><creatorcontrib>Al-Soudi, Jihad</creatorcontrib><creatorcontrib>Robicsek, Francis</creatorcontrib><title>Wall Stress Studies of Abdominal Aortic Aneurysm in a Clinical Model</title><title>Annals of vascular surgery</title><addtitle>Ann Vasc Surg</addtitle><description>To estimate when an abdominal aortic aneurysm (AAA) may rupture, it is necessary to understand the forces responsible for this event. We investigated the wall stresses in an AAA in a clinical model. Using CT scans of the AAA, the diameter and wall thickness were measured and the model of the aneurysm was created. The wall stresses were determined using a finite element analysis in which the aorta was considered isotropic with linear material properties and was loaded with a pressure of 120 mmHg. The AAA was eccentric with a length of 10.5 cm, a diameter of 2.5 to 5.9 cm, and a wall thickness of 1.0 to 2.0 mm. The aneurysm had specific areas of high stress. On the inner surface the highest stress was 0.4 N/mm 2 and occurred along two circumferentially oriented belts—one at the bulb and the other just below. The stress was longitudinal at the anterior region of the bulb and circumferential elsewhere, suggesting that a rupture caused by this stress will result in a circumferential tear at the anterior portion of the bulb and a longitudinal tear elsewhere. In the mid-surface the highest stress was 0.37 N/mm 2 and occurred at two locations: the posterior region of the bulb and anteriorly just below. The stress was circumferential, suggesting that the rupture caused by this stress will produce a longitudinal tear. The location and orientation of the maximum stress were influenced more by the tethering force than by the wall thickness, luminal pressure, or wall stiffness. In conclusion, the rupture of an AAA is most likely to occur on the inner surface at the bulb. Such analytical approaches could lead to a better understanding of the aneurysm rupture and may be instrumental in planning surgical interventions.</description><subject>Aortic Aneurysm, Abdominal - physiopathology</subject><subject>Humans</subject><subject>Models, Cardiovascular</subject><subject>Stress, Mechanical</subject><issn>0890-5096</issn><issn>1615-5947</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10E1LxDAQBuAgiruuHr1K8eCtmjRJkx7L-gkrHlQ8hjaZQpa00aQV9t8b2QVR8DCZQx5emBehU4IvCcbiKqaXlGkwlngPzUlJeM4rJvbRHMsK5xxX5QwdxbhOqJBMHqIZIYwwLOUcXb81zmXPY4AY05qMhZj5Lqtb43s7NC6rfRitzuoBprCJfWaHrMmWzg5Wp99Hb8Ado4OucRFOdnuBXm9vXpb3-erp7mFZr3JNSzbmgmpRStJqaA1oUTEKhBeYguC6k20hMWlBGtbIjmJTARVl0ZqCcC6BaUnpAl1sc9-D_5ggjqq3UYNzzQB-ikrgimNCqgTP_8C1n0K6JqqCMC7KUrKE8i3SwccYoFPvwfZN2CiC1Xe36le3yZ_tQqe2B_Ojd2UmILYAUgefFoKK2sKgwdgAelTG23-ivwBn5oNg</recordid><startdate>20010501</startdate><enddate>20010501</enddate><creator>Thubrikar, Mano J.</creator><creator>Al-Soudi, Jihad</creator><creator>Robicsek, Francis</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20010501</creationdate><title>Wall Stress Studies of Abdominal Aortic Aneurysm in a Clinical Model</title><author>Thubrikar, Mano J. ; Al-Soudi, Jihad ; Robicsek, Francis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-73c7681bcebdec7943e15203e75cf8b2801be8d4a8f30d9e3762bd21558e4c833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Aortic Aneurysm, Abdominal - physiopathology</topic><topic>Humans</topic><topic>Models, Cardiovascular</topic><topic>Stress, Mechanical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thubrikar, Mano J.</creatorcontrib><creatorcontrib>Al-Soudi, Jihad</creatorcontrib><creatorcontrib>Robicsek, Francis</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of vascular surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thubrikar, Mano J.</au><au>Al-Soudi, Jihad</au><au>Robicsek, Francis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wall Stress Studies of Abdominal Aortic Aneurysm in a Clinical Model</atitle><jtitle>Annals of vascular surgery</jtitle><addtitle>Ann Vasc Surg</addtitle><date>2001-05-01</date><risdate>2001</risdate><volume>15</volume><issue>3</issue><spage>355</spage><epage>366</epage><pages>355-366</pages><issn>0890-5096</issn><eissn>1615-5947</eissn><coden>AVSUEV</coden><abstract>To estimate when an abdominal aortic aneurysm (AAA) may rupture, it is necessary to understand the forces responsible for this event. We investigated the wall stresses in an AAA in a clinical model. Using CT scans of the AAA, the diameter and wall thickness were measured and the model of the aneurysm was created. The wall stresses were determined using a finite element analysis in which the aorta was considered isotropic with linear material properties and was loaded with a pressure of 120 mmHg. The AAA was eccentric with a length of 10.5 cm, a diameter of 2.5 to 5.9 cm, and a wall thickness of 1.0 to 2.0 mm. The aneurysm had specific areas of high stress. On the inner surface the highest stress was 0.4 N/mm 2 and occurred along two circumferentially oriented belts—one at the bulb and the other just below. The stress was longitudinal at the anterior region of the bulb and circumferential elsewhere, suggesting that a rupture caused by this stress will result in a circumferential tear at the anterior portion of the bulb and a longitudinal tear elsewhere. In the mid-surface the highest stress was 0.37 N/mm 2 and occurred at two locations: the posterior region of the bulb and anteriorly just below. The stress was circumferential, suggesting that the rupture caused by this stress will produce a longitudinal tear. The location and orientation of the maximum stress were influenced more by the tethering force than by the wall thickness, luminal pressure, or wall stiffness. In conclusion, the rupture of an AAA is most likely to occur on the inner surface at the bulb. Such analytical approaches could lead to a better understanding of the aneurysm rupture and may be instrumental in planning surgical interventions.</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>11414088</pmid><doi>10.1007/s100160010080</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0890-5096
ispartof Annals of vascular surgery, 2001-05, Vol.15 (3), p.355-366
issn 0890-5096
1615-5947
language eng
recordid cdi_proquest_miscellaneous_70950119
source MEDLINE; SpringerLink Journals; Elsevier ScienceDirect Journals
subjects Aortic Aneurysm, Abdominal - physiopathology
Humans
Models, Cardiovascular
Stress, Mechanical
title Wall Stress Studies of Abdominal Aortic Aneurysm in a Clinical Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A32%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wall%20Stress%20Studies%20of%20Abdominal%20Aortic%20Aneurysm%20in%20a%20Clinical%20Model&rft.jtitle=Annals%20of%20vascular%20surgery&rft.au=Thubrikar,%20Mano%20J.&rft.date=2001-05-01&rft.volume=15&rft.issue=3&rft.spage=355&rft.epage=366&rft.pages=355-366&rft.issn=0890-5096&rft.eissn=1615-5947&rft.coden=AVSUEV&rft_id=info:doi/10.1007/s100160010080&rft_dat=%3Cproquest_cross%3E70950119%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214576684&rft_id=info:pmid/11414088&rft_els_id=S0890509606621821&rfr_iscdi=true