Unique in vivo associations with SmgGDS and RhoGDI and different guanine nucleotide exchange activities exhibited by RhoA, dominant negative RhoA(Asn-19), and activated RhoA(Val-14)

We compared the in vivo characteristics of hemagglutinin (HA)-tagged RhoA, dominant negative RhoA(Asn-19), and activated RhoA(Val-14) stably expressed in Chinese hamster ovary (CHO) cells. Proteins co-precipitating with these HA-tagged GTPases were identified by peptide sequencing or by Western blot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2000-03, Vol.275 (10), p.6699-6702
Hauptverfasser: Strassheim, D, Porter, R A, Phelps, S H, Williams, C L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We compared the in vivo characteristics of hemagglutinin (HA)-tagged RhoA, dominant negative RhoA(Asn-19), and activated RhoA(Val-14) stably expressed in Chinese hamster ovary (CHO) cells. Proteins co-precipitating with these HA-tagged GTPases were identified by peptide sequencing or by Western blotting. Dominant negative RhoA(Asn-19) co-precipitates with the guanine nucleotide exchange factor (GEF) SmgGDS but does not detectably interact with other expressed GEFs, such as Ost or Dbl. SmgGDS co-precipitates minimally with wild-type RhoA and does not detectably associate with RhoA(Val-14). The guanine nucleotide dissociation inhibitor RhoGDI co-precipitates with RhoA, and to a lesser extent with RhoA(Val-14), but does not detectably co-precipitate with RhoA(Asn-19). Wild-type RhoA is predominantly in the [(32)P]GDP-bound form, RhoA(Val-14) is predominantly in the [(32)P]GTP-bound form, and negligible levels of [(32)P]GDP or [(32)P]GTP are bound to RhoA(Asn-19) in (32)P-labeled cells. Immunofluorescence analyses indicate that HA-RhoA(Asn-19) is excluded from the nucleus and cell junctions. Microinjection of SmgGDS cDNA into CHO cells stably expressing HA-RhoA causes HA-RhoA to be excluded from the nucleus and cell junctions, similar to the distribution of RhoA(Asn-19). Our findings indicate that the expression of RhoA(Asn-19) may specifically inhibit signaling pathways that rely upon the SmgGDS-dependent activation of RhoA.
ISSN:0021-9258
DOI:10.1074/jbc.275.10.6699