Phase determination and extension using X-ray multiple diffraction and the maximum-entropy method
The extension of the phases of the structure factors of the organic crystal C25H25NO2 from 77 starting individual phases using the maximum‐entropy method is reported. These starting phases were determined from 90 experimental triplet phases calculated from 215 measured ‐scan three‐beam and four‐beam...
Gespeichert in:
Veröffentlicht in: | Acta crystallographica. Section A, Foundations of crystallography Foundations of crystallography, 2001-07, Vol.57 (4), p.420-428 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 428 |
---|---|
container_issue | 4 |
container_start_page | 420 |
container_title | Acta crystallographica. Section A, Foundations of crystallography |
container_volume | 57 |
creator | Wang, Chien-Mei Chao, Chun-Hsiung Chang, Shih-Lin |
description | The extension of the phases of the structure factors of the organic crystal C25H25NO2 from 77 starting individual phases using the maximum‐entropy method is reported. These starting phases were determined from 90 experimental triplet phases calculated from 215 measured ‐scan three‐beam and four‐beam diffraction profiles obtained with a rotating‐anode X‐ray source, where the scans were around the reciprocal‐lattice vectors of the 001, 002 and 003 reflections. The extension of the structure factors with phase values was carried out using the maximum‐entropy method for 2040 measured two‐beam Bragg diffraction intensities with 77 starting phases and the symmetry of the space group as the constraints. Use of structure‐factor triplets as constraints for entropy maximization was also attempted. The minimum χ2 criteria were applied to the maximum‐entropy extrapolation to discern the best phase set to be used as the new constraints for the next step of generating new phases. With this phase‐extension procedure, more than 100 phases were determined and an electron‐density map at 1.97 Å was deduced. |
doi_str_mv | 10.1107/S0108767300018869 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70937017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70937017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4562-834758500699eb638a3847e85cb750af5692e9c1574a13fddc4888d2ac1be0f03</originalsourceid><addsrcrecordid>eNqFkE1rFEEQhpugJGuSH5CLzEFyG62e_pzjsuZLggkYMTk1vT01but8rN09uPvvnWGXKHjIqSjqed6Cl5AzCu8pBfXhC1DQSioGAFRrWR6QGZUAuVAFf0Vm0zmf7kfkTYw_JopROCRHlHKqlShmxN6vbMSswoSh9Z1Nvu8y21UZbhJ2cdqG6Lvv2WMe7DZrhyb5dTMKvq6Ddc94WmHW2o1vhzbHLoV-PcKYVn11Ql7Xtol4up_H5OvlxcPiOr-9u7pZzG9zx4Uscs24EloAyLLEpWTaMs0VauGWSoCthSwLLB0VilvK6qpyXGtdFdbRJUIN7Jic73LXof81YEym9dFh09gO-yEaBSVTQNUI0h3oQh9jwNqsg29t2BoKZurV_Nfr6Lzdhw_LFqu_xr7IEXi3B2x0thm76ZyP_yQXkvMJ0zvst29w-_JjM3-a380B2KTmO9XHhJtn1YafZhSUMN8-X5lPHxda8EtpSvYHhfyepA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70937017</pqid></control><display><type>article</type><title>Phase determination and extension using X-ray multiple diffraction and the maximum-entropy method</title><source>Crystallography Journals Online</source><source>Access via Wiley Online Library</source><creator>Wang, Chien-Mei ; Chao, Chun-Hsiung ; Chang, Shih-Lin</creator><creatorcontrib>Wang, Chien-Mei ; Chao, Chun-Hsiung ; Chang, Shih-Lin</creatorcontrib><description>The extension of the phases of the structure factors of the organic crystal C25H25NO2 from 77 starting individual phases using the maximum‐entropy method is reported. These starting phases were determined from 90 experimental triplet phases calculated from 215 measured ‐scan three‐beam and four‐beam diffraction profiles obtained with a rotating‐anode X‐ray source, where the scans were around the reciprocal‐lattice vectors of the 001, 002 and 003 reflections. The extension of the structure factors with phase values was carried out using the maximum‐entropy method for 2040 measured two‐beam Bragg diffraction intensities with 77 starting phases and the symmetry of the space group as the constraints. Use of structure‐factor triplets as constraints for entropy maximization was also attempted. The minimum χ2 criteria were applied to the maximum‐entropy extrapolation to discern the best phase set to be used as the new constraints for the next step of generating new phases. With this phase‐extension procedure, more than 100 phases were determined and an electron‐density map at 1.97 Å was deduced.</description><identifier>ISSN: 0108-7673</identifier><identifier>EISSN: 1600-5724</identifier><identifier>DOI: 10.1107/S0108767300018869</identifier><identifier>PMID: 11418752</identifier><identifier>CODEN: ACACEQ</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: Munksgaard International Publishers</publisher><subject>Condensed matter: structure, mechanical and thermal properties ; Exact sciences and technology ; maximum entropy ; multiple diffraction ; phase determination ; Physics ; Single-crystal and powder diffraction ; Structure of solids and liquids; crystallography ; X-ray diffraction and scattering</subject><ispartof>Acta crystallographica. Section A, Foundations of crystallography, 2001-07, Vol.57 (4), p.420-428</ispartof><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4562-834758500699eb638a3847e85cb750af5692e9c1574a13fddc4888d2ac1be0f03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS0108767300018869$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS0108767300018869$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,3987,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1026442$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11418752$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Chien-Mei</creatorcontrib><creatorcontrib>Chao, Chun-Hsiung</creatorcontrib><creatorcontrib>Chang, Shih-Lin</creatorcontrib><title>Phase determination and extension using X-ray multiple diffraction and the maximum-entropy method</title><title>Acta crystallographica. Section A, Foundations of crystallography</title><addtitle>Acta Cryst. A</addtitle><description>The extension of the phases of the structure factors of the organic crystal C25H25NO2 from 77 starting individual phases using the maximum‐entropy method is reported. These starting phases were determined from 90 experimental triplet phases calculated from 215 measured ‐scan three‐beam and four‐beam diffraction profiles obtained with a rotating‐anode X‐ray source, where the scans were around the reciprocal‐lattice vectors of the 001, 002 and 003 reflections. The extension of the structure factors with phase values was carried out using the maximum‐entropy method for 2040 measured two‐beam Bragg diffraction intensities with 77 starting phases and the symmetry of the space group as the constraints. Use of structure‐factor triplets as constraints for entropy maximization was also attempted. The minimum χ2 criteria were applied to the maximum‐entropy extrapolation to discern the best phase set to be used as the new constraints for the next step of generating new phases. With this phase‐extension procedure, more than 100 phases were determined and an electron‐density map at 1.97 Å was deduced.</description><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Exact sciences and technology</subject><subject>maximum entropy</subject><subject>multiple diffraction</subject><subject>phase determination</subject><subject>Physics</subject><subject>Single-crystal and powder diffraction</subject><subject>Structure of solids and liquids; crystallography</subject><subject>X-ray diffraction and scattering</subject><issn>0108-7673</issn><issn>1600-5724</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkE1rFEEQhpugJGuSH5CLzEFyG62e_pzjsuZLggkYMTk1vT01but8rN09uPvvnWGXKHjIqSjqed6Cl5AzCu8pBfXhC1DQSioGAFRrWR6QGZUAuVAFf0Vm0zmf7kfkTYw_JopROCRHlHKqlShmxN6vbMSswoSh9Z1Nvu8y21UZbhJ2cdqG6Lvv2WMe7DZrhyb5dTMKvq6Ddc94WmHW2o1vhzbHLoV-PcKYVn11Ql7Xtol4up_H5OvlxcPiOr-9u7pZzG9zx4Uscs24EloAyLLEpWTaMs0VauGWSoCthSwLLB0VilvK6qpyXGtdFdbRJUIN7Jic73LXof81YEym9dFh09gO-yEaBSVTQNUI0h3oQh9jwNqsg29t2BoKZurV_Nfr6Lzdhw_LFqu_xr7IEXi3B2x0thm76ZyP_yQXkvMJ0zvst29w-_JjM3-a380B2KTmO9XHhJtn1YafZhSUMN8-X5lPHxda8EtpSvYHhfyepA</recordid><startdate>200107</startdate><enddate>200107</enddate><creator>Wang, Chien-Mei</creator><creator>Chao, Chun-Hsiung</creator><creator>Chang, Shih-Lin</creator><general>Munksgaard International Publishers</general><general>Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200107</creationdate><title>Phase determination and extension using X-ray multiple diffraction and the maximum-entropy method</title><author>Wang, Chien-Mei ; Chao, Chun-Hsiung ; Chang, Shih-Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4562-834758500699eb638a3847e85cb750af5692e9c1574a13fddc4888d2ac1be0f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Exact sciences and technology</topic><topic>maximum entropy</topic><topic>multiple diffraction</topic><topic>phase determination</topic><topic>Physics</topic><topic>Single-crystal and powder diffraction</topic><topic>Structure of solids and liquids; crystallography</topic><topic>X-ray diffraction and scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chien-Mei</creatorcontrib><creatorcontrib>Chao, Chun-Hsiung</creatorcontrib><creatorcontrib>Chang, Shih-Lin</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Acta crystallographica. Section A, Foundations of crystallography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chien-Mei</au><au>Chao, Chun-Hsiung</au><au>Chang, Shih-Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase determination and extension using X-ray multiple diffraction and the maximum-entropy method</atitle><jtitle>Acta crystallographica. Section A, Foundations of crystallography</jtitle><addtitle>Acta Cryst. A</addtitle><date>2001-07</date><risdate>2001</risdate><volume>57</volume><issue>4</issue><spage>420</spage><epage>428</epage><pages>420-428</pages><issn>0108-7673</issn><eissn>1600-5724</eissn><coden>ACACEQ</coden><abstract>The extension of the phases of the structure factors of the organic crystal C25H25NO2 from 77 starting individual phases using the maximum‐entropy method is reported. These starting phases were determined from 90 experimental triplet phases calculated from 215 measured ‐scan three‐beam and four‐beam diffraction profiles obtained with a rotating‐anode X‐ray source, where the scans were around the reciprocal‐lattice vectors of the 001, 002 and 003 reflections. The extension of the structure factors with phase values was carried out using the maximum‐entropy method for 2040 measured two‐beam Bragg diffraction intensities with 77 starting phases and the symmetry of the space group as the constraints. Use of structure‐factor triplets as constraints for entropy maximization was also attempted. The minimum χ2 criteria were applied to the maximum‐entropy extrapolation to discern the best phase set to be used as the new constraints for the next step of generating new phases. With this phase‐extension procedure, more than 100 phases were determined and an electron‐density map at 1.97 Å was deduced.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>Munksgaard International Publishers</pub><pmid>11418752</pmid><doi>10.1107/S0108767300018869</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0108-7673 |
ispartof | Acta crystallographica. Section A, Foundations of crystallography, 2001-07, Vol.57 (4), p.420-428 |
issn | 0108-7673 1600-5724 |
language | eng |
recordid | cdi_proquest_miscellaneous_70937017 |
source | Crystallography Journals Online; Access via Wiley Online Library |
subjects | Condensed matter: structure, mechanical and thermal properties Exact sciences and technology maximum entropy multiple diffraction phase determination Physics Single-crystal and powder diffraction Structure of solids and liquids crystallography X-ray diffraction and scattering |
title | Phase determination and extension using X-ray multiple diffraction and the maximum-entropy method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A07%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20determination%20and%20extension%20using%20X-ray%20multiple%20diffraction%20and%20the%20maximum-entropy%20method&rft.jtitle=Acta%20crystallographica.%20Section%20A,%20Foundations%20of%20crystallography&rft.au=Wang,%20Chien-Mei&rft.date=2001-07&rft.volume=57&rft.issue=4&rft.spage=420&rft.epage=428&rft.pages=420-428&rft.issn=0108-7673&rft.eissn=1600-5724&rft.coden=ACACEQ&rft_id=info:doi/10.1107/S0108767300018869&rft_dat=%3Cproquest_cross%3E70937017%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70937017&rft_id=info:pmid/11418752&rfr_iscdi=true |