Requirements for Osmosensing and Osmotic Activation of Transporter ProP from Escherichia coli
Transporter ProP of Escherichia coli, a solute-H+ symporter, can sense and respond to osmotic upshifts imposed on cells, on membrane vesicles, or on proteoliposomes that incorporate purified ProP-(His)6. In this study, proline uptake catalyzed by ProP was used as a measure of its osmotic activation,...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 2001-06, Vol.40 (24), p.7324-7333 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7333 |
---|---|
container_issue | 24 |
container_start_page | 7324 |
container_title | Biochemistry (Easton) |
container_volume | 40 |
creator | Racher, Kathleen I Culham, Doreen E Wood, Janet M |
description | Transporter ProP of Escherichia coli, a solute-H+ symporter, can sense and respond to osmotic upshifts imposed on cells, on membrane vesicles, or on proteoliposomes that incorporate purified ProP-(His)6. In this study, proline uptake catalyzed by ProP was used as a measure of its osmotic activation, and the requirements for osmosensing were defined using the proteoliposome system. The initial rate of proline uptake increased with decreasing external pH and increasing ΔΨ, lumen negative. Osmotic upshifts increased ΔΨ by concentrating lumenal K+, but osmotic activation of ProP could be distinguished from this effect. Osmotic activation of ProP resulted from changes in V max, though osmotic shifts also increased the K M for proline. Osmotic activation could be described as a reversible, osmotic upshift-dependent transition linking (at least) two transporter protein conformations. No correlation was observed between ProP activation and the position of the anions of activating sodium salts within the Hofmeister series of solutes. Both the magnitude of the osmotic upshift required to activate ProP and the ProP activity attained were similar for membrane-impermeant osmolytes, including NaCl, glucose, and PEG 600. The membrane-permeant osmolytes glycerol, urea, PEG 62, and PEG 106 failed to activate ProP. Two poly(ethylene glycol)s, PEG 150 and PEG 200, were membrane-permeant and did not cause liposome shrinkage, but they did partially activate ProP-(His)6. |
doi_str_mv | 10.1021/bi002331u |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70917723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70917723</sourcerecordid><originalsourceid>FETCH-LOGICAL-a380t-6af24b4ebde43138559f1f2e384a397087539197be0f0d08f88d61073836dc1e3</originalsourceid><addsrcrecordid>eNqF0MFu1DAQgGELgehSOPACyBeQOARmYid2jm3VhUqrdgXLEVmOM6Yum3hrJwjentBdlUulnqyRP81IP2OvET4glPixDQClEDg9YQusSihk01RP2QIA6qJsajhiL3K-mUcJSj5nR4gSsNK4YN-_0O0UEvU0jJn7mPhV7mOmIYfhB7dDdzePwfETN4Zfdgxx4NHzTbJD3sU0UuLrFNfcp9jz8-yuKQV3HSx3cRtesmfebjO9OrzH7NvyfHP2uVhdfbo4O1kVVmgYi9r6UraS2o6kQKGrqvHoSxJaWtEo0KoSDTaqJfDQgfZadzWCElrUnUMSx-zdfu8uxduJ8mj6kB1tt3agOGWjoEGl5kSPQdSodCVhhu_30KWYcyJvdin0Nv0xCOZfdHMffbZvDkuntqfuvzxUnkGxByGP9Pv-36afplZCVWaz_mrw8nS1vNTCLGf_du-ty-YmTmmY4z1w-C9ImpcO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18178540</pqid></control><display><type>article</type><title>Requirements for Osmosensing and Osmotic Activation of Transporter ProP from Escherichia coli</title><source>MEDLINE</source><source>ACS Publications</source><creator>Racher, Kathleen I ; Culham, Doreen E ; Wood, Janet M</creator><creatorcontrib>Racher, Kathleen I ; Culham, Doreen E ; Wood, Janet M</creatorcontrib><description>Transporter ProP of Escherichia coli, a solute-H+ symporter, can sense and respond to osmotic upshifts imposed on cells, on membrane vesicles, or on proteoliposomes that incorporate purified ProP-(His)6. In this study, proline uptake catalyzed by ProP was used as a measure of its osmotic activation, and the requirements for osmosensing were defined using the proteoliposome system. The initial rate of proline uptake increased with decreasing external pH and increasing ΔΨ, lumen negative. Osmotic upshifts increased ΔΨ by concentrating lumenal K+, but osmotic activation of ProP could be distinguished from this effect. Osmotic activation of ProP resulted from changes in V max, though osmotic shifts also increased the K M for proline. Osmotic activation could be described as a reversible, osmotic upshift-dependent transition linking (at least) two transporter protein conformations. No correlation was observed between ProP activation and the position of the anions of activating sodium salts within the Hofmeister series of solutes. Both the magnitude of the osmotic upshift required to activate ProP and the ProP activity attained were similar for membrane-impermeant osmolytes, including NaCl, glucose, and PEG 600. The membrane-permeant osmolytes glycerol, urea, PEG 62, and PEG 106 failed to activate ProP. Two poly(ethylene glycol)s, PEG 150 and PEG 200, were membrane-permeant and did not cause liposome shrinkage, but they did partially activate ProP-(His)6.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi002331u</identifier><identifier>PMID: 11401581</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacterial Proteins - physiology ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Carrier Proteins - physiology ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli - physiology ; Escherichia coli Proteins ; Glucosides - pharmacology ; Histidine - genetics ; Hydrogen-Ion Concentration ; Kinetics ; Liposomes - metabolism ; Membrane Potentials - drug effects ; Membrane Potentials - genetics ; Osmolar Concentration ; Osmotic Pressure - drug effects ; Plasmids - metabolism ; Polyethylene Glycols - pharmacology ; ProP protein ; Proteolipids - genetics ; Proteolipids - metabolism ; Proteolipids - physiology ; Sodium Chloride - pharmacology ; Solutions ; Symporters ; transporters</subject><ispartof>Biochemistry (Easton), 2001-06, Vol.40 (24), p.7324-7333</ispartof><rights>Copyright © 2001 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a380t-6af24b4ebde43138559f1f2e384a397087539197be0f0d08f88d61073836dc1e3</citedby><cites>FETCH-LOGICAL-a380t-6af24b4ebde43138559f1f2e384a397087539197be0f0d08f88d61073836dc1e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bi002331u$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bi002331u$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,782,786,2767,27083,27931,27932,56745,56795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11401581$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Racher, Kathleen I</creatorcontrib><creatorcontrib>Culham, Doreen E</creatorcontrib><creatorcontrib>Wood, Janet M</creatorcontrib><title>Requirements for Osmosensing and Osmotic Activation of Transporter ProP from Escherichia coli</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>Transporter ProP of Escherichia coli, a solute-H+ symporter, can sense and respond to osmotic upshifts imposed on cells, on membrane vesicles, or on proteoliposomes that incorporate purified ProP-(His)6. In this study, proline uptake catalyzed by ProP was used as a measure of its osmotic activation, and the requirements for osmosensing were defined using the proteoliposome system. The initial rate of proline uptake increased with decreasing external pH and increasing ΔΨ, lumen negative. Osmotic upshifts increased ΔΨ by concentrating lumenal K+, but osmotic activation of ProP could be distinguished from this effect. Osmotic activation of ProP resulted from changes in V max, though osmotic shifts also increased the K M for proline. Osmotic activation could be described as a reversible, osmotic upshift-dependent transition linking (at least) two transporter protein conformations. No correlation was observed between ProP activation and the position of the anions of activating sodium salts within the Hofmeister series of solutes. Both the magnitude of the osmotic upshift required to activate ProP and the ProP activity attained were similar for membrane-impermeant osmolytes, including NaCl, glucose, and PEG 600. The membrane-permeant osmolytes glycerol, urea, PEG 62, and PEG 106 failed to activate ProP. Two poly(ethylene glycol)s, PEG 150 and PEG 200, were membrane-permeant and did not cause liposome shrinkage, but they did partially activate ProP-(His)6.</description><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacterial Proteins - physiology</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Carrier Proteins - physiology</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli - physiology</subject><subject>Escherichia coli Proteins</subject><subject>Glucosides - pharmacology</subject><subject>Histidine - genetics</subject><subject>Hydrogen-Ion Concentration</subject><subject>Kinetics</subject><subject>Liposomes - metabolism</subject><subject>Membrane Potentials - drug effects</subject><subject>Membrane Potentials - genetics</subject><subject>Osmolar Concentration</subject><subject>Osmotic Pressure - drug effects</subject><subject>Plasmids - metabolism</subject><subject>Polyethylene Glycols - pharmacology</subject><subject>ProP protein</subject><subject>Proteolipids - genetics</subject><subject>Proteolipids - metabolism</subject><subject>Proteolipids - physiology</subject><subject>Sodium Chloride - pharmacology</subject><subject>Solutions</subject><subject>Symporters</subject><subject>transporters</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0MFu1DAQgGELgehSOPACyBeQOARmYid2jm3VhUqrdgXLEVmOM6Yum3hrJwjentBdlUulnqyRP81IP2OvET4glPixDQClEDg9YQusSihk01RP2QIA6qJsajhiL3K-mUcJSj5nR4gSsNK4YN-_0O0UEvU0jJn7mPhV7mOmIYfhB7dDdzePwfETN4Zfdgxx4NHzTbJD3sU0UuLrFNfcp9jz8-yuKQV3HSx3cRtesmfebjO9OrzH7NvyfHP2uVhdfbo4O1kVVmgYi9r6UraS2o6kQKGrqvHoSxJaWtEo0KoSDTaqJfDQgfZadzWCElrUnUMSx-zdfu8uxduJ8mj6kB1tt3agOGWjoEGl5kSPQdSodCVhhu_30KWYcyJvdin0Nv0xCOZfdHMffbZvDkuntqfuvzxUnkGxByGP9Pv-36afplZCVWaz_mrw8nS1vNTCLGf_du-ty-YmTmmY4z1w-C9ImpcO</recordid><startdate>20010619</startdate><enddate>20010619</enddate><creator>Racher, Kathleen I</creator><creator>Culham, Doreen E</creator><creator>Wood, Janet M</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>20010619</creationdate><title>Requirements for Osmosensing and Osmotic Activation of Transporter ProP from Escherichia coli</title><author>Racher, Kathleen I ; Culham, Doreen E ; Wood, Janet M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a380t-6af24b4ebde43138559f1f2e384a397087539197be0f0d08f88d61073836dc1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacterial Proteins - physiology</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Carrier Proteins - physiology</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli - physiology</topic><topic>Escherichia coli Proteins</topic><topic>Glucosides - pharmacology</topic><topic>Histidine - genetics</topic><topic>Hydrogen-Ion Concentration</topic><topic>Kinetics</topic><topic>Liposomes - metabolism</topic><topic>Membrane Potentials - drug effects</topic><topic>Membrane Potentials - genetics</topic><topic>Osmolar Concentration</topic><topic>Osmotic Pressure - drug effects</topic><topic>Plasmids - metabolism</topic><topic>Polyethylene Glycols - pharmacology</topic><topic>ProP protein</topic><topic>Proteolipids - genetics</topic><topic>Proteolipids - metabolism</topic><topic>Proteolipids - physiology</topic><topic>Sodium Chloride - pharmacology</topic><topic>Solutions</topic><topic>Symporters</topic><topic>transporters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Racher, Kathleen I</creatorcontrib><creatorcontrib>Culham, Doreen E</creatorcontrib><creatorcontrib>Wood, Janet M</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Racher, Kathleen I</au><au>Culham, Doreen E</au><au>Wood, Janet M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Requirements for Osmosensing and Osmotic Activation of Transporter ProP from Escherichia coli</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2001-06-19</date><risdate>2001</risdate><volume>40</volume><issue>24</issue><spage>7324</spage><epage>7333</epage><pages>7324-7333</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>Transporter ProP of Escherichia coli, a solute-H+ symporter, can sense and respond to osmotic upshifts imposed on cells, on membrane vesicles, or on proteoliposomes that incorporate purified ProP-(His)6. In this study, proline uptake catalyzed by ProP was used as a measure of its osmotic activation, and the requirements for osmosensing were defined using the proteoliposome system. The initial rate of proline uptake increased with decreasing external pH and increasing ΔΨ, lumen negative. Osmotic upshifts increased ΔΨ by concentrating lumenal K+, but osmotic activation of ProP could be distinguished from this effect. Osmotic activation of ProP resulted from changes in V max, though osmotic shifts also increased the K M for proline. Osmotic activation could be described as a reversible, osmotic upshift-dependent transition linking (at least) two transporter protein conformations. No correlation was observed between ProP activation and the position of the anions of activating sodium salts within the Hofmeister series of solutes. Both the magnitude of the osmotic upshift required to activate ProP and the ProP activity attained were similar for membrane-impermeant osmolytes, including NaCl, glucose, and PEG 600. The membrane-permeant osmolytes glycerol, urea, PEG 62, and PEG 106 failed to activate ProP. Two poly(ethylene glycol)s, PEG 150 and PEG 200, were membrane-permeant and did not cause liposome shrinkage, but they did partially activate ProP-(His)6.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>11401581</pmid><doi>10.1021/bi002331u</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2960 |
ispartof | Biochemistry (Easton), 2001-06, Vol.40 (24), p.7324-7333 |
issn | 0006-2960 1520-4995 |
language | eng |
recordid | cdi_proquest_miscellaneous_70917723 |
source | MEDLINE; ACS Publications |
subjects | Bacterial Proteins - genetics Bacterial Proteins - metabolism Bacterial Proteins - physiology Carrier Proteins - genetics Carrier Proteins - metabolism Carrier Proteins - physiology Escherichia coli Escherichia coli - genetics Escherichia coli - metabolism Escherichia coli - physiology Escherichia coli Proteins Glucosides - pharmacology Histidine - genetics Hydrogen-Ion Concentration Kinetics Liposomes - metabolism Membrane Potentials - drug effects Membrane Potentials - genetics Osmolar Concentration Osmotic Pressure - drug effects Plasmids - metabolism Polyethylene Glycols - pharmacology ProP protein Proteolipids - genetics Proteolipids - metabolism Proteolipids - physiology Sodium Chloride - pharmacology Solutions Symporters transporters |
title | Requirements for Osmosensing and Osmotic Activation of Transporter ProP from Escherichia coli |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T16%3A47%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Requirements%20for%20Osmosensing%20and%20Osmotic%20Activation%20of%20Transporter%20ProP%20from%20Escherichia%20coli&rft.jtitle=Biochemistry%20(Easton)&rft.au=Racher,%20Kathleen%20I&rft.date=2001-06-19&rft.volume=40&rft.issue=24&rft.spage=7324&rft.epage=7333&rft.pages=7324-7333&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi002331u&rft_dat=%3Cproquest_cross%3E70917723%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18178540&rft_id=info:pmid/11401581&rfr_iscdi=true |