Cerebral vasodilatation induced by stimulation of the pterygopalatine ganglion and greater petrosal nerve in anesthetized monkeys

Although brain cell viability depends largely on cerebral circulation, mechanisms of blood flow control, such as autoregulation, or of the pathogenesis of functionally impaired blood supply to brain regions, such as in cerebral vasospasm after subarachnoid hemorrhage, have not been clearly defined....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroscience 2000-02, Vol.96 (2), p.393-398
Hauptverfasser: Toda, N, Tanaka, T, Ayajiki, K, Okamura, T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 398
container_issue 2
container_start_page 393
container_title Neuroscience
container_volume 96
creator Toda, N
Tanaka, T
Ayajiki, K
Okamura, T
description Although brain cell viability depends largely on cerebral circulation, mechanisms of blood flow control, such as autoregulation, or of the pathogenesis of functionally impaired blood supply to brain regions, such as in cerebral vasospasm after subarachnoid hemorrhage, have not been clearly defined. Our recent studies support the hypothesis that nitric oxide, released from nitrergic nerves, plays a crucial role as a neurotransmitter in vasodilating cerebral arteries from primate and subprimate mammals. In the present study, we demonstrated, by using arterial angiography, that electrical stimulation of the pterygopalatine ganglion produced vasodilatation of ipsilateral cerebral arteries of anesthetized Japanese monkeys. The response was abolished by intravenous injections of N G-nitro- l-arginine, a nitric oxide synthase inhibitor. Denervation of the ganglion elicited cerebral vasoconstriction, indicating that vasodilator nerves from the vasomotor center were tonically active. Stimulation of the greater petrosal nerve, upstream of the pterygopalatine ganglion, also elicited cerebral vasodilatation, which was abolished by treatment with the nitric oxide synthase inhibitor and with hexamethonium, indicating that the nerve is in connection via synapses with the nitrergic nerve innervating cerebral arteries. Endogenous nitric oxide released from the nerve may contribute to the maintenance of blood flow in major cerebral arteries necessary to supply blood to the different brain regions. Without this influence, cerebral arteries might be constricted to the extent that blood flow is impeded. This is the first direct evidence indicating an important role of nitric oxide liberated by pre- and postganglionic nerve stimulation in the control of cerebral arterial tone in primates.
doi_str_mv 10.1016/S0306-4522(99)00557-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70911850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306452299005576</els_id><sourcerecordid>18015349</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-faabbff7a24cdcd88392a4a9eb70ee08c61fdc6e2251879c19ee5226af60625c3</originalsourceid><addsrcrecordid>eNqFkT2P1DAQhi0E4vYOfgLIBUJQBOwkduIKoRUHSCdRALU1cSaLIV_YzkpLxz9nclkB3bmxNPPMOx8vY0-keCWF1K8_i0LorFR5_sKYl0IoVWX6HtvJuiqySpXlfbb7i1ywyxi_C3qqLB6yCyl0XajK7NjvPQZsAvT8CHFqfQ8Jkp9G7sd2cdjy5sRj8sPSb-Gp4-kb8jlhOB2mGdbwiPwA46Ff8zC2_BAQKM9nTGGKJD1iOCIpUhYjlSf_i5SHafyBp_iIPeigj_j4_F-xr9fvvuw_ZDef3n_cv73JXFlXKesAmqbrKshL17q2rguTQwkGm0ogitpp2bVOY54rOoFx0iDS5ho6LXSuXHHFnm-6c5h-LjSHHXx02Pc01LREWwkjZa3EnaCshVRFaQhUG-hozRiws3PwA4STlcKuJtlbk-zqgDXG3ppkNdU9PTdYmgHb_6o2Vwh4dgYgOui7AKPz8R-Xk8f1ir3ZMKSzHT0GG53HkVzzAV2y7eTvmOQPAHeyEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18015349</pqid></control><display><type>article</type><title>Cerebral vasodilatation induced by stimulation of the pterygopalatine ganglion and greater petrosal nerve in anesthetized monkeys</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Toda, N ; Tanaka, T ; Ayajiki, K ; Okamura, T</creator><creatorcontrib>Toda, N ; Tanaka, T ; Ayajiki, K ; Okamura, T</creatorcontrib><description>Although brain cell viability depends largely on cerebral circulation, mechanisms of blood flow control, such as autoregulation, or of the pathogenesis of functionally impaired blood supply to brain regions, such as in cerebral vasospasm after subarachnoid hemorrhage, have not been clearly defined. Our recent studies support the hypothesis that nitric oxide, released from nitrergic nerves, plays a crucial role as a neurotransmitter in vasodilating cerebral arteries from primate and subprimate mammals. In the present study, we demonstrated, by using arterial angiography, that electrical stimulation of the pterygopalatine ganglion produced vasodilatation of ipsilateral cerebral arteries of anesthetized Japanese monkeys. The response was abolished by intravenous injections of N G-nitro- l-arginine, a nitric oxide synthase inhibitor. Denervation of the ganglion elicited cerebral vasoconstriction, indicating that vasodilator nerves from the vasomotor center were tonically active. Stimulation of the greater petrosal nerve, upstream of the pterygopalatine ganglion, also elicited cerebral vasodilatation, which was abolished by treatment with the nitric oxide synthase inhibitor and with hexamethonium, indicating that the nerve is in connection via synapses with the nitrergic nerve innervating cerebral arteries. Endogenous nitric oxide released from the nerve may contribute to the maintenance of blood flow in major cerebral arteries necessary to supply blood to the different brain regions. Without this influence, cerebral arteries might be constricted to the extent that blood flow is impeded. This is the first direct evidence indicating an important role of nitric oxide liberated by pre- and postganglionic nerve stimulation in the control of cerebral arterial tone in primates.</description><identifier>ISSN: 0306-4522</identifier><identifier>EISSN: 1873-7544</identifier><identifier>DOI: 10.1016/S0306-4522(99)00557-6</identifier><identifier>PMID: 10683579</identifier><identifier>CODEN: NRSCDN</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Animals ; Biological and medical sciences ; Cerebral Arteries - metabolism ; cerebral artery ; Cerebral circulation. Blood-brain barrier. Choroid plexus. Cerebrospinal fluid. Circumventricular organ. Meninges ; Cerebral Cortex - metabolism ; Cerebrovascular Circulation - physiology ; Denervation ; Electric Stimulation ; Facial Nerve - anatomy &amp; histology ; Facial Nerve - metabolism ; Fundamental and applied biological sciences. Psychology ; Ganglia, Parasympathetic - anatomy &amp; histology ; Ganglia, Parasympathetic - metabolism ; Macaca - anatomy &amp; histology ; Macaca - physiology ; Macaca fuscata ; neurogenic vasodilatation ; nitric oxide ; Nitric Oxide - metabolism ; Parasympathetic Fibers, Postganglionic - anatomy &amp; histology ; Parasympathetic Fibers, Postganglionic - metabolism ; primates ; pterygopalatine ganglion ; Vasodilation - physiology ; Vertebrates: nervous system and sense organs</subject><ispartof>Neuroscience, 2000-02, Vol.96 (2), p.393-398</ispartof><rights>1999 IBRO</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-faabbff7a24cdcd88392a4a9eb70ee08c61fdc6e2251879c19ee5226af60625c3</citedby><cites>FETCH-LOGICAL-c487t-faabbff7a24cdcd88392a4a9eb70ee08c61fdc6e2251879c19ee5226af60625c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0306-4522(99)00557-6$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1287389$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10683579$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Toda, N</creatorcontrib><creatorcontrib>Tanaka, T</creatorcontrib><creatorcontrib>Ayajiki, K</creatorcontrib><creatorcontrib>Okamura, T</creatorcontrib><title>Cerebral vasodilatation induced by stimulation of the pterygopalatine ganglion and greater petrosal nerve in anesthetized monkeys</title><title>Neuroscience</title><addtitle>Neuroscience</addtitle><description>Although brain cell viability depends largely on cerebral circulation, mechanisms of blood flow control, such as autoregulation, or of the pathogenesis of functionally impaired blood supply to brain regions, such as in cerebral vasospasm after subarachnoid hemorrhage, have not been clearly defined. Our recent studies support the hypothesis that nitric oxide, released from nitrergic nerves, plays a crucial role as a neurotransmitter in vasodilating cerebral arteries from primate and subprimate mammals. In the present study, we demonstrated, by using arterial angiography, that electrical stimulation of the pterygopalatine ganglion produced vasodilatation of ipsilateral cerebral arteries of anesthetized Japanese monkeys. The response was abolished by intravenous injections of N G-nitro- l-arginine, a nitric oxide synthase inhibitor. Denervation of the ganglion elicited cerebral vasoconstriction, indicating that vasodilator nerves from the vasomotor center were tonically active. Stimulation of the greater petrosal nerve, upstream of the pterygopalatine ganglion, also elicited cerebral vasodilatation, which was abolished by treatment with the nitric oxide synthase inhibitor and with hexamethonium, indicating that the nerve is in connection via synapses with the nitrergic nerve innervating cerebral arteries. Endogenous nitric oxide released from the nerve may contribute to the maintenance of blood flow in major cerebral arteries necessary to supply blood to the different brain regions. Without this influence, cerebral arteries might be constricted to the extent that blood flow is impeded. This is the first direct evidence indicating an important role of nitric oxide liberated by pre- and postganglionic nerve stimulation in the control of cerebral arterial tone in primates.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Cerebral Arteries - metabolism</subject><subject>cerebral artery</subject><subject>Cerebral circulation. Blood-brain barrier. Choroid plexus. Cerebrospinal fluid. Circumventricular organ. Meninges</subject><subject>Cerebral Cortex - metabolism</subject><subject>Cerebrovascular Circulation - physiology</subject><subject>Denervation</subject><subject>Electric Stimulation</subject><subject>Facial Nerve - anatomy &amp; histology</subject><subject>Facial Nerve - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Ganglia, Parasympathetic - anatomy &amp; histology</subject><subject>Ganglia, Parasympathetic - metabolism</subject><subject>Macaca - anatomy &amp; histology</subject><subject>Macaca - physiology</subject><subject>Macaca fuscata</subject><subject>neurogenic vasodilatation</subject><subject>nitric oxide</subject><subject>Nitric Oxide - metabolism</subject><subject>Parasympathetic Fibers, Postganglionic - anatomy &amp; histology</subject><subject>Parasympathetic Fibers, Postganglionic - metabolism</subject><subject>primates</subject><subject>pterygopalatine ganglion</subject><subject>Vasodilation - physiology</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0306-4522</issn><issn>1873-7544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkT2P1DAQhi0E4vYOfgLIBUJQBOwkduIKoRUHSCdRALU1cSaLIV_YzkpLxz9nclkB3bmxNPPMOx8vY0-keCWF1K8_i0LorFR5_sKYl0IoVWX6HtvJuiqySpXlfbb7i1ywyxi_C3qqLB6yCyl0XajK7NjvPQZsAvT8CHFqfQ8Jkp9G7sd2cdjy5sRj8sPSb-Gp4-kb8jlhOB2mGdbwiPwA46Ff8zC2_BAQKM9nTGGKJD1iOCIpUhYjlSf_i5SHafyBp_iIPeigj_j4_F-xr9fvvuw_ZDef3n_cv73JXFlXKesAmqbrKshL17q2rguTQwkGm0ogitpp2bVOY54rOoFx0iDS5ho6LXSuXHHFnm-6c5h-LjSHHXx02Pc01LREWwkjZa3EnaCshVRFaQhUG-hozRiws3PwA4STlcKuJtlbk-zqgDXG3ppkNdU9PTdYmgHb_6o2Vwh4dgYgOui7AKPz8R-Xk8f1ir3ZMKSzHT0GG53HkVzzAV2y7eTvmOQPAHeyEw</recordid><startdate>200002</startdate><enddate>200002</enddate><creator>Toda, N</creator><creator>Tanaka, T</creator><creator>Ayajiki, K</creator><creator>Okamura, T</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>200002</creationdate><title>Cerebral vasodilatation induced by stimulation of the pterygopalatine ganglion and greater petrosal nerve in anesthetized monkeys</title><author>Toda, N ; Tanaka, T ; Ayajiki, K ; Okamura, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-faabbff7a24cdcd88392a4a9eb70ee08c61fdc6e2251879c19ee5226af60625c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Cerebral Arteries - metabolism</topic><topic>cerebral artery</topic><topic>Cerebral circulation. Blood-brain barrier. Choroid plexus. Cerebrospinal fluid. Circumventricular organ. Meninges</topic><topic>Cerebral Cortex - metabolism</topic><topic>Cerebrovascular Circulation - physiology</topic><topic>Denervation</topic><topic>Electric Stimulation</topic><topic>Facial Nerve - anatomy &amp; histology</topic><topic>Facial Nerve - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Ganglia, Parasympathetic - anatomy &amp; histology</topic><topic>Ganglia, Parasympathetic - metabolism</topic><topic>Macaca - anatomy &amp; histology</topic><topic>Macaca - physiology</topic><topic>Macaca fuscata</topic><topic>neurogenic vasodilatation</topic><topic>nitric oxide</topic><topic>Nitric Oxide - metabolism</topic><topic>Parasympathetic Fibers, Postganglionic - anatomy &amp; histology</topic><topic>Parasympathetic Fibers, Postganglionic - metabolism</topic><topic>primates</topic><topic>pterygopalatine ganglion</topic><topic>Vasodilation - physiology</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toda, N</creatorcontrib><creatorcontrib>Tanaka, T</creatorcontrib><creatorcontrib>Ayajiki, K</creatorcontrib><creatorcontrib>Okamura, T</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toda, N</au><au>Tanaka, T</au><au>Ayajiki, K</au><au>Okamura, T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cerebral vasodilatation induced by stimulation of the pterygopalatine ganglion and greater petrosal nerve in anesthetized monkeys</atitle><jtitle>Neuroscience</jtitle><addtitle>Neuroscience</addtitle><date>2000-02</date><risdate>2000</risdate><volume>96</volume><issue>2</issue><spage>393</spage><epage>398</epage><pages>393-398</pages><issn>0306-4522</issn><eissn>1873-7544</eissn><coden>NRSCDN</coden><abstract>Although brain cell viability depends largely on cerebral circulation, mechanisms of blood flow control, such as autoregulation, or of the pathogenesis of functionally impaired blood supply to brain regions, such as in cerebral vasospasm after subarachnoid hemorrhage, have not been clearly defined. Our recent studies support the hypothesis that nitric oxide, released from nitrergic nerves, plays a crucial role as a neurotransmitter in vasodilating cerebral arteries from primate and subprimate mammals. In the present study, we demonstrated, by using arterial angiography, that electrical stimulation of the pterygopalatine ganglion produced vasodilatation of ipsilateral cerebral arteries of anesthetized Japanese monkeys. The response was abolished by intravenous injections of N G-nitro- l-arginine, a nitric oxide synthase inhibitor. Denervation of the ganglion elicited cerebral vasoconstriction, indicating that vasodilator nerves from the vasomotor center were tonically active. Stimulation of the greater petrosal nerve, upstream of the pterygopalatine ganglion, also elicited cerebral vasodilatation, which was abolished by treatment with the nitric oxide synthase inhibitor and with hexamethonium, indicating that the nerve is in connection via synapses with the nitrergic nerve innervating cerebral arteries. Endogenous nitric oxide released from the nerve may contribute to the maintenance of blood flow in major cerebral arteries necessary to supply blood to the different brain regions. Without this influence, cerebral arteries might be constricted to the extent that blood flow is impeded. This is the first direct evidence indicating an important role of nitric oxide liberated by pre- and postganglionic nerve stimulation in the control of cerebral arterial tone in primates.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>10683579</pmid><doi>10.1016/S0306-4522(99)00557-6</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0306-4522
ispartof Neuroscience, 2000-02, Vol.96 (2), p.393-398
issn 0306-4522
1873-7544
language eng
recordid cdi_proquest_miscellaneous_70911850
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Biological and medical sciences
Cerebral Arteries - metabolism
cerebral artery
Cerebral circulation. Blood-brain barrier. Choroid plexus. Cerebrospinal fluid. Circumventricular organ. Meninges
Cerebral Cortex - metabolism
Cerebrovascular Circulation - physiology
Denervation
Electric Stimulation
Facial Nerve - anatomy & histology
Facial Nerve - metabolism
Fundamental and applied biological sciences. Psychology
Ganglia, Parasympathetic - anatomy & histology
Ganglia, Parasympathetic - metabolism
Macaca - anatomy & histology
Macaca - physiology
Macaca fuscata
neurogenic vasodilatation
nitric oxide
Nitric Oxide - metabolism
Parasympathetic Fibers, Postganglionic - anatomy & histology
Parasympathetic Fibers, Postganglionic - metabolism
primates
pterygopalatine ganglion
Vasodilation - physiology
Vertebrates: nervous system and sense organs
title Cerebral vasodilatation induced by stimulation of the pterygopalatine ganglion and greater petrosal nerve in anesthetized monkeys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T10%3A10%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cerebral%20vasodilatation%20induced%20by%20stimulation%20of%20the%20pterygopalatine%20ganglion%20and%20greater%20petrosal%20nerve%20in%20anesthetized%20monkeys&rft.jtitle=Neuroscience&rft.au=Toda,%20N&rft.date=2000-02&rft.volume=96&rft.issue=2&rft.spage=393&rft.epage=398&rft.pages=393-398&rft.issn=0306-4522&rft.eissn=1873-7544&rft.coden=NRSCDN&rft_id=info:doi/10.1016/S0306-4522(99)00557-6&rft_dat=%3Cproquest_cross%3E18015349%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18015349&rft_id=info:pmid/10683579&rft_els_id=S0306452299005576&rfr_iscdi=true