An Approach to Three-Dimensional Structures of Biomolecules by Using Single-Molecule Diffraction Images

We describe an approach to the high-resolution three-dimensional structural determination of macromolecules that utilizes ultrashort, intense x-ray pulses to record diffraction data in combination with direct phase retrieval by the oversampling technique. It is shown that a simulated molecular diffr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2001-06, Vol.98 (12), p.6641-6645
Hauptverfasser: Miao, Jianwei, Hodgson, Keith O., Sayre, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6645
container_issue 12
container_start_page 6641
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 98
creator Miao, Jianwei
Hodgson, Keith O.
Sayre, David
description We describe an approach to the high-resolution three-dimensional structural determination of macromolecules that utilizes ultrashort, intense x-ray pulses to record diffraction data in combination with direct phase retrieval by the oversampling technique. It is shown that a simulated molecular diffraction pattern at 2.5-Å resolution accumulated from multiple copies of single rubisco biomolecules, each generated by a femtosecond-level x-ray free electron laser pulse, can be successfully phased and transformed into an accurate electron density map comparable to that obtained by more conventional methods. The phase problem is solved by using an iterative algorithm with a random phase set as an initial input. The convergence speed of the algorithm is reasonably fast, typically around a few hundred iterations. This approach and phasing method do not require any ab initio information about the molecule, do not require an extended ordered lattice array, and can tolerate high noise and some missing intensity data at the center of the diffraction pattern. With the prospects of the x-ray free electron lasers, this approach could provide a major new opportunity for the high-resolution three-dimensional structure determination of single biomolecules.
doi_str_mv 10.1073/pnas.111083998
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_70901556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3055864</jstor_id><sourcerecordid>3055864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c553t-6b8a1acec6e7b6e37f3e9e12635718a316f0f3b35e87873890408f36c05a63d23</originalsourceid><addsrcrecordid>eNp9kc1v1DAQxS0EokvhygmhiAOcsozj2LElLkvLR6UiDm3PluOOd7Ny4tR2EP3vyWqXpXDgMqPR-73RaB4hLyksKTTs_TiYtKSUgmRKyUdkQUHRUtQKHpMFQNWUsq7qE_IspS0AKC7hKTmhlClQii3IejUUq3GMwdhNkUNxvYmI5XnX45C6MBhfXOU42TxFTEVwxccu9MGjnfw8t_fFTeqGdXE1F4_lt4NSnHfORWPzvKG46M0a03PyxBmf8MWhn5Kbz5-uz76Wl9-_XJytLkvLOculaKWhxqIV2LQCWeMYKqSVYLyh0jAqHDjWMo6ykQ2TCmqQjgkL3Ah2W7FT8mG_d5zaHm8tDjkar8fY9Sbe62A6_bcydBu9Dj80q2sQs_3twR7D3YQp675LFr03A4Yp6QYUUM534Jt_wG2Y4vyvpCugrFFUwgwt95CNIaWI7ngHBb2LT-_i08f4ZsPrh9f_wQ95PQB2xt-ykppWWoiazsC7_wLaTd5n_Jln8tWe3KYc4hFlwLkUNfsFsh64dg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201379180</pqid></control><display><type>article</type><title>An Approach to Three-Dimensional Structures of Biomolecules by Using Single-Molecule Diffraction Images</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Miao, Jianwei ; Hodgson, Keith O. ; Sayre, David</creator><creatorcontrib>Miao, Jianwei ; Hodgson, Keith O. ; Sayre, David</creatorcontrib><description>We describe an approach to the high-resolution three-dimensional structural determination of macromolecules that utilizes ultrashort, intense x-ray pulses to record diffraction data in combination with direct phase retrieval by the oversampling technique. It is shown that a simulated molecular diffraction pattern at 2.5-Å resolution accumulated from multiple copies of single rubisco biomolecules, each generated by a femtosecond-level x-ray free electron laser pulse, can be successfully phased and transformed into an accurate electron density map comparable to that obtained by more conventional methods. The phase problem is solved by using an iterative algorithm with a random phase set as an initial input. The convergence speed of the algorithm is reasonably fast, typically around a few hundred iterations. This approach and phasing method do not require any ab initio information about the molecule, do not require an extended ordered lattice array, and can tolerate high noise and some missing intensity data at the center of the diffraction pattern. With the prospects of the x-ray free electron lasers, this approach could provide a major new opportunity for the high-resolution three-dimensional structure determination of single biomolecules.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.111083998</identifier><identifier>PMID: 11390993</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Biology ; Biomolecules ; Computer based modeling ; Computer Simulation ; Diffraction patterns ; Electrical phases ; Electron density ; Fourier transformations ; Information retrieval noise ; Molecules ; Noise intensity ; Pixels ; Ribulose-Bisphosphate Carboxylase - chemistry ; Wave diffraction ; X-Ray Diffraction ; X-rays</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2001-06, Vol.98 (12), p.6641-6645</ispartof><rights>Copyright 1993-2001 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jun 5, 2001</rights><rights>Copyright © 2001, The National Academy of Sciences 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c553t-6b8a1acec6e7b6e37f3e9e12635718a316f0f3b35e87873890408f36c05a63d23</citedby><cites>FETCH-LOGICAL-c553t-6b8a1acec6e7b6e37f3e9e12635718a316f0f3b35e87873890408f36c05a63d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/98/12.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3055864$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3055864$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11390993$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miao, Jianwei</creatorcontrib><creatorcontrib>Hodgson, Keith O.</creatorcontrib><creatorcontrib>Sayre, David</creatorcontrib><title>An Approach to Three-Dimensional Structures of Biomolecules by Using Single-Molecule Diffraction Images</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We describe an approach to the high-resolution three-dimensional structural determination of macromolecules that utilizes ultrashort, intense x-ray pulses to record diffraction data in combination with direct phase retrieval by the oversampling technique. It is shown that a simulated molecular diffraction pattern at 2.5-Å resolution accumulated from multiple copies of single rubisco biomolecules, each generated by a femtosecond-level x-ray free electron laser pulse, can be successfully phased and transformed into an accurate electron density map comparable to that obtained by more conventional methods. The phase problem is solved by using an iterative algorithm with a random phase set as an initial input. The convergence speed of the algorithm is reasonably fast, typically around a few hundred iterations. This approach and phasing method do not require any ab initio information about the molecule, do not require an extended ordered lattice array, and can tolerate high noise and some missing intensity data at the center of the diffraction pattern. With the prospects of the x-ray free electron lasers, this approach could provide a major new opportunity for the high-resolution three-dimensional structure determination of single biomolecules.</description><subject>Biological Sciences</subject><subject>Biology</subject><subject>Biomolecules</subject><subject>Computer based modeling</subject><subject>Computer Simulation</subject><subject>Diffraction patterns</subject><subject>Electrical phases</subject><subject>Electron density</subject><subject>Fourier transformations</subject><subject>Information retrieval noise</subject><subject>Molecules</subject><subject>Noise intensity</subject><subject>Pixels</subject><subject>Ribulose-Bisphosphate Carboxylase - chemistry</subject><subject>Wave diffraction</subject><subject>X-Ray Diffraction</subject><subject>X-rays</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1v1DAQxS0EokvhygmhiAOcsozj2LElLkvLR6UiDm3PluOOd7Ny4tR2EP3vyWqXpXDgMqPR-73RaB4hLyksKTTs_TiYtKSUgmRKyUdkQUHRUtQKHpMFQNWUsq7qE_IspS0AKC7hKTmhlClQii3IejUUq3GMwdhNkUNxvYmI5XnX45C6MBhfXOU42TxFTEVwxccu9MGjnfw8t_fFTeqGdXE1F4_lt4NSnHfORWPzvKG46M0a03PyxBmf8MWhn5Kbz5-uz76Wl9-_XJytLkvLOculaKWhxqIV2LQCWeMYKqSVYLyh0jAqHDjWMo6ykQ2TCmqQjgkL3Ah2W7FT8mG_d5zaHm8tDjkar8fY9Sbe62A6_bcydBu9Dj80q2sQs_3twR7D3YQp675LFr03A4Yp6QYUUM534Jt_wG2Y4vyvpCugrFFUwgwt95CNIaWI7ngHBb2LT-_i08f4ZsPrh9f_wQ95PQB2xt-ykppWWoiazsC7_wLaTd5n_Jln8tWe3KYc4hFlwLkUNfsFsh64dg</recordid><startdate>20010605</startdate><enddate>20010605</enddate><creator>Miao, Jianwei</creator><creator>Hodgson, Keith O.</creator><creator>Sayre, David</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20010605</creationdate><title>An Approach to Three-Dimensional Structures of Biomolecules by Using Single-Molecule Diffraction Images</title><author>Miao, Jianwei ; Hodgson, Keith O. ; Sayre, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c553t-6b8a1acec6e7b6e37f3e9e12635718a316f0f3b35e87873890408f36c05a63d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Biological Sciences</topic><topic>Biology</topic><topic>Biomolecules</topic><topic>Computer based modeling</topic><topic>Computer Simulation</topic><topic>Diffraction patterns</topic><topic>Electrical phases</topic><topic>Electron density</topic><topic>Fourier transformations</topic><topic>Information retrieval noise</topic><topic>Molecules</topic><topic>Noise intensity</topic><topic>Pixels</topic><topic>Ribulose-Bisphosphate Carboxylase - chemistry</topic><topic>Wave diffraction</topic><topic>X-Ray Diffraction</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miao, Jianwei</creatorcontrib><creatorcontrib>Hodgson, Keith O.</creatorcontrib><creatorcontrib>Sayre, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miao, Jianwei</au><au>Hodgson, Keith O.</au><au>Sayre, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Approach to Three-Dimensional Structures of Biomolecules by Using Single-Molecule Diffraction Images</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2001-06-05</date><risdate>2001</risdate><volume>98</volume><issue>12</issue><spage>6641</spage><epage>6645</epage><pages>6641-6645</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>We describe an approach to the high-resolution three-dimensional structural determination of macromolecules that utilizes ultrashort, intense x-ray pulses to record diffraction data in combination with direct phase retrieval by the oversampling technique. It is shown that a simulated molecular diffraction pattern at 2.5-Å resolution accumulated from multiple copies of single rubisco biomolecules, each generated by a femtosecond-level x-ray free electron laser pulse, can be successfully phased and transformed into an accurate electron density map comparable to that obtained by more conventional methods. The phase problem is solved by using an iterative algorithm with a random phase set as an initial input. The convergence speed of the algorithm is reasonably fast, typically around a few hundred iterations. This approach and phasing method do not require any ab initio information about the molecule, do not require an extended ordered lattice array, and can tolerate high noise and some missing intensity data at the center of the diffraction pattern. With the prospects of the x-ray free electron lasers, this approach could provide a major new opportunity for the high-resolution three-dimensional structure determination of single biomolecules.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>11390993</pmid><doi>10.1073/pnas.111083998</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2001-06, Vol.98 (12), p.6641-6645
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_70901556
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Biological Sciences
Biology
Biomolecules
Computer based modeling
Computer Simulation
Diffraction patterns
Electrical phases
Electron density
Fourier transformations
Information retrieval noise
Molecules
Noise intensity
Pixels
Ribulose-Bisphosphate Carboxylase - chemistry
Wave diffraction
X-Ray Diffraction
X-rays
title An Approach to Three-Dimensional Structures of Biomolecules by Using Single-Molecule Diffraction Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A52%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Approach%20to%20Three-Dimensional%20Structures%20of%20Biomolecules%20by%20Using%20Single-Molecule%20Diffraction%20Images&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Miao,%20Jianwei&rft.date=2001-06-05&rft.volume=98&rft.issue=12&rft.spage=6641&rft.epage=6645&rft.pages=6641-6645&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.111083998&rft_dat=%3Cjstor_proqu%3E3055864%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201379180&rft_id=info:pmid/11390993&rft_jstor_id=3055864&rfr_iscdi=true