An Approach to Three-Dimensional Structures of Biomolecules by Using Single-Molecule Diffraction Images
We describe an approach to the high-resolution three-dimensional structural determination of macromolecules that utilizes ultrashort, intense x-ray pulses to record diffraction data in combination with direct phase retrieval by the oversampling technique. It is shown that a simulated molecular diffr...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2001-06, Vol.98 (12), p.6641-6645 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6645 |
---|---|
container_issue | 12 |
container_start_page | 6641 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 98 |
creator | Miao, Jianwei Hodgson, Keith O. Sayre, David |
description | We describe an approach to the high-resolution three-dimensional structural determination of macromolecules that utilizes ultrashort, intense x-ray pulses to record diffraction data in combination with direct phase retrieval by the oversampling technique. It is shown that a simulated molecular diffraction pattern at 2.5-Å resolution accumulated from multiple copies of single rubisco biomolecules, each generated by a femtosecond-level x-ray free electron laser pulse, can be successfully phased and transformed into an accurate electron density map comparable to that obtained by more conventional methods. The phase problem is solved by using an iterative algorithm with a random phase set as an initial input. The convergence speed of the algorithm is reasonably fast, typically around a few hundred iterations. This approach and phasing method do not require any ab initio information about the molecule, do not require an extended ordered lattice array, and can tolerate high noise and some missing intensity data at the center of the diffraction pattern. With the prospects of the x-ray free electron lasers, this approach could provide a major new opportunity for the high-resolution three-dimensional structure determination of single biomolecules. |
doi_str_mv | 10.1073/pnas.111083998 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_70901556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3055864</jstor_id><sourcerecordid>3055864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c553t-6b8a1acec6e7b6e37f3e9e12635718a316f0f3b35e87873890408f36c05a63d23</originalsourceid><addsrcrecordid>eNp9kc1v1DAQxS0EokvhygmhiAOcsozj2LElLkvLR6UiDm3PluOOd7Ny4tR2EP3vyWqXpXDgMqPR-73RaB4hLyksKTTs_TiYtKSUgmRKyUdkQUHRUtQKHpMFQNWUsq7qE_IspS0AKC7hKTmhlClQii3IejUUq3GMwdhNkUNxvYmI5XnX45C6MBhfXOU42TxFTEVwxccu9MGjnfw8t_fFTeqGdXE1F4_lt4NSnHfORWPzvKG46M0a03PyxBmf8MWhn5Kbz5-uz76Wl9-_XJytLkvLOculaKWhxqIV2LQCWeMYKqSVYLyh0jAqHDjWMo6ykQ2TCmqQjgkL3Ah2W7FT8mG_d5zaHm8tDjkar8fY9Sbe62A6_bcydBu9Dj80q2sQs_3twR7D3YQp675LFr03A4Yp6QYUUM534Jt_wG2Y4vyvpCugrFFUwgwt95CNIaWI7ngHBb2LT-_i08f4ZsPrh9f_wQ95PQB2xt-ykppWWoiazsC7_wLaTd5n_Jln8tWe3KYc4hFlwLkUNfsFsh64dg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201379180</pqid></control><display><type>article</type><title>An Approach to Three-Dimensional Structures of Biomolecules by Using Single-Molecule Diffraction Images</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Miao, Jianwei ; Hodgson, Keith O. ; Sayre, David</creator><creatorcontrib>Miao, Jianwei ; Hodgson, Keith O. ; Sayre, David</creatorcontrib><description>We describe an approach to the high-resolution three-dimensional structural determination of macromolecules that utilizes ultrashort, intense x-ray pulses to record diffraction data in combination with direct phase retrieval by the oversampling technique. It is shown that a simulated molecular diffraction pattern at 2.5-Å resolution accumulated from multiple copies of single rubisco biomolecules, each generated by a femtosecond-level x-ray free electron laser pulse, can be successfully phased and transformed into an accurate electron density map comparable to that obtained by more conventional methods. The phase problem is solved by using an iterative algorithm with a random phase set as an initial input. The convergence speed of the algorithm is reasonably fast, typically around a few hundred iterations. This approach and phasing method do not require any ab initio information about the molecule, do not require an extended ordered lattice array, and can tolerate high noise and some missing intensity data at the center of the diffraction pattern. With the prospects of the x-ray free electron lasers, this approach could provide a major new opportunity for the high-resolution three-dimensional structure determination of single biomolecules.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.111083998</identifier><identifier>PMID: 11390993</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Biology ; Biomolecules ; Computer based modeling ; Computer Simulation ; Diffraction patterns ; Electrical phases ; Electron density ; Fourier transformations ; Information retrieval noise ; Molecules ; Noise intensity ; Pixels ; Ribulose-Bisphosphate Carboxylase - chemistry ; Wave diffraction ; X-Ray Diffraction ; X-rays</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2001-06, Vol.98 (12), p.6641-6645</ispartof><rights>Copyright 1993-2001 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jun 5, 2001</rights><rights>Copyright © 2001, The National Academy of Sciences 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c553t-6b8a1acec6e7b6e37f3e9e12635718a316f0f3b35e87873890408f36c05a63d23</citedby><cites>FETCH-LOGICAL-c553t-6b8a1acec6e7b6e37f3e9e12635718a316f0f3b35e87873890408f36c05a63d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/98/12.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3055864$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3055864$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11390993$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miao, Jianwei</creatorcontrib><creatorcontrib>Hodgson, Keith O.</creatorcontrib><creatorcontrib>Sayre, David</creatorcontrib><title>An Approach to Three-Dimensional Structures of Biomolecules by Using Single-Molecule Diffraction Images</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We describe an approach to the high-resolution three-dimensional structural determination of macromolecules that utilizes ultrashort, intense x-ray pulses to record diffraction data in combination with direct phase retrieval by the oversampling technique. It is shown that a simulated molecular diffraction pattern at 2.5-Å resolution accumulated from multiple copies of single rubisco biomolecules, each generated by a femtosecond-level x-ray free electron laser pulse, can be successfully phased and transformed into an accurate electron density map comparable to that obtained by more conventional methods. The phase problem is solved by using an iterative algorithm with a random phase set as an initial input. The convergence speed of the algorithm is reasonably fast, typically around a few hundred iterations. This approach and phasing method do not require any ab initio information about the molecule, do not require an extended ordered lattice array, and can tolerate high noise and some missing intensity data at the center of the diffraction pattern. With the prospects of the x-ray free electron lasers, this approach could provide a major new opportunity for the high-resolution three-dimensional structure determination of single biomolecules.</description><subject>Biological Sciences</subject><subject>Biology</subject><subject>Biomolecules</subject><subject>Computer based modeling</subject><subject>Computer Simulation</subject><subject>Diffraction patterns</subject><subject>Electrical phases</subject><subject>Electron density</subject><subject>Fourier transformations</subject><subject>Information retrieval noise</subject><subject>Molecules</subject><subject>Noise intensity</subject><subject>Pixels</subject><subject>Ribulose-Bisphosphate Carboxylase - chemistry</subject><subject>Wave diffraction</subject><subject>X-Ray Diffraction</subject><subject>X-rays</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1v1DAQxS0EokvhygmhiAOcsozj2LElLkvLR6UiDm3PluOOd7Ny4tR2EP3vyWqXpXDgMqPR-73RaB4hLyksKTTs_TiYtKSUgmRKyUdkQUHRUtQKHpMFQNWUsq7qE_IspS0AKC7hKTmhlClQii3IejUUq3GMwdhNkUNxvYmI5XnX45C6MBhfXOU42TxFTEVwxccu9MGjnfw8t_fFTeqGdXE1F4_lt4NSnHfORWPzvKG46M0a03PyxBmf8MWhn5Kbz5-uz76Wl9-_XJytLkvLOculaKWhxqIV2LQCWeMYKqSVYLyh0jAqHDjWMo6ykQ2TCmqQjgkL3Ah2W7FT8mG_d5zaHm8tDjkar8fY9Sbe62A6_bcydBu9Dj80q2sQs_3twR7D3YQp675LFr03A4Yp6QYUUM534Jt_wG2Y4vyvpCugrFFUwgwt95CNIaWI7ngHBb2LT-_i08f4ZsPrh9f_wQ95PQB2xt-ykppWWoiazsC7_wLaTd5n_Jln8tWe3KYc4hFlwLkUNfsFsh64dg</recordid><startdate>20010605</startdate><enddate>20010605</enddate><creator>Miao, Jianwei</creator><creator>Hodgson, Keith O.</creator><creator>Sayre, David</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20010605</creationdate><title>An Approach to Three-Dimensional Structures of Biomolecules by Using Single-Molecule Diffraction Images</title><author>Miao, Jianwei ; Hodgson, Keith O. ; Sayre, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c553t-6b8a1acec6e7b6e37f3e9e12635718a316f0f3b35e87873890408f36c05a63d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Biological Sciences</topic><topic>Biology</topic><topic>Biomolecules</topic><topic>Computer based modeling</topic><topic>Computer Simulation</topic><topic>Diffraction patterns</topic><topic>Electrical phases</topic><topic>Electron density</topic><topic>Fourier transformations</topic><topic>Information retrieval noise</topic><topic>Molecules</topic><topic>Noise intensity</topic><topic>Pixels</topic><topic>Ribulose-Bisphosphate Carboxylase - chemistry</topic><topic>Wave diffraction</topic><topic>X-Ray Diffraction</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miao, Jianwei</creatorcontrib><creatorcontrib>Hodgson, Keith O.</creatorcontrib><creatorcontrib>Sayre, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miao, Jianwei</au><au>Hodgson, Keith O.</au><au>Sayre, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Approach to Three-Dimensional Structures of Biomolecules by Using Single-Molecule Diffraction Images</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2001-06-05</date><risdate>2001</risdate><volume>98</volume><issue>12</issue><spage>6641</spage><epage>6645</epage><pages>6641-6645</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>We describe an approach to the high-resolution three-dimensional structural determination of macromolecules that utilizes ultrashort, intense x-ray pulses to record diffraction data in combination with direct phase retrieval by the oversampling technique. It is shown that a simulated molecular diffraction pattern at 2.5-Å resolution accumulated from multiple copies of single rubisco biomolecules, each generated by a femtosecond-level x-ray free electron laser pulse, can be successfully phased and transformed into an accurate electron density map comparable to that obtained by more conventional methods. The phase problem is solved by using an iterative algorithm with a random phase set as an initial input. The convergence speed of the algorithm is reasonably fast, typically around a few hundred iterations. This approach and phasing method do not require any ab initio information about the molecule, do not require an extended ordered lattice array, and can tolerate high noise and some missing intensity data at the center of the diffraction pattern. With the prospects of the x-ray free electron lasers, this approach could provide a major new opportunity for the high-resolution three-dimensional structure determination of single biomolecules.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>11390993</pmid><doi>10.1073/pnas.111083998</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2001-06, Vol.98 (12), p.6641-6645 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_70901556 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Biological Sciences Biology Biomolecules Computer based modeling Computer Simulation Diffraction patterns Electrical phases Electron density Fourier transformations Information retrieval noise Molecules Noise intensity Pixels Ribulose-Bisphosphate Carboxylase - chemistry Wave diffraction X-Ray Diffraction X-rays |
title | An Approach to Three-Dimensional Structures of Biomolecules by Using Single-Molecule Diffraction Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A52%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Approach%20to%20Three-Dimensional%20Structures%20of%20Biomolecules%20by%20Using%20Single-Molecule%20Diffraction%20Images&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Miao,%20Jianwei&rft.date=2001-06-05&rft.volume=98&rft.issue=12&rft.spage=6641&rft.epage=6645&rft.pages=6641-6645&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.111083998&rft_dat=%3Cjstor_proqu%3E3055864%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201379180&rft_id=info:pmid/11390993&rft_jstor_id=3055864&rfr_iscdi=true |