High-Throughput Flow Cytometric DNA Fragment Sizing
The rate of detection and sizing of individual fluorescently labeled DNA fragments in conventional single-molecule flow cytometry (SMFC) is limited by optical saturation, photon-counting statistics, and fragment overlap to ∼100 fragments/s. We have increased the detection rate for DNA fragment sizin...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2000-01, Vol.72 (1), p.37-41 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 41 |
---|---|
container_issue | 1 |
container_start_page | 37 |
container_title | Analytical chemistry (Washington) |
container_volume | 72 |
creator | Van Orden, Alan Keller, Richard A Ambrose, W. Patrick |
description | The rate of detection and sizing of individual fluorescently labeled DNA fragments in conventional single-molecule flow cytometry (SMFC) is limited by optical saturation, photon-counting statistics, and fragment overlap to ∼100 fragments/s. We have increased the detection rate for DNA fragment sizing in SMFC to ∼2000 fragments/s by parallel imaging of the fluorescence from individual DNA molecules, stained with a fluorescent intercalating dye, as they passed through a planar sheet of excitation laser light, resulting in order of magnitude improvements in the measurement speed and the sample throughput compared to conventional SMFC. Fluorescence bursts were measured from a fM solution of DNA fragments ranging in size from 7 to 154 kilobase pairs. A data acquisition time of only a few seconds was sufficient to determine the DNA fragment size distribution. A linear relationship between the number of detected photons per burst and the DNA fragment size was confirmed. Application of this parallel fluorescence imaging method will lead to improvements in the speed, throughput, and sensitivity of other types of flow-based analyses involving the study of single molecules, chromosomes, cells, etc. |
doi_str_mv | 10.1021/ac990782i |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70889871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>48132228</sourcerecordid><originalsourceid>FETCH-LOGICAL-a435t-18d12b0ab6192adfecb702ca173e79d26c2abc33633aba306407c9d905f376583</originalsourceid><addsrcrecordid>eNqF0E1v1DAQBmALgeiycOAPoAhEpR4CY8_Gdo5lYbdIFSB1uXCxJo6z65KPrZ0Iyq9vqqwWBAdOM9I8Gs28jD3n8IaD4G_J5jkoLfwDNuOZgFRqLR6yGQBgKhTACXsS4zUA58DlY3bCQWaZRDFjeOG3u3SzC92w3e2HPlnV3Y9kedt3jeuDt8n7T-fJKtC2cW2fXPlfvt0-ZY8qqqN7dqhz9nX1YbO8SC8_rz8uzy9TWmDWp1yXXBRAheS5oLJytlAgLHGFTuWlkFZQYRElIhWEIBegbF7mkFWoZKZxzk6nvfvQ3Qwu9qbx0bq6ptZ1QzQKtM614v-FXKkFikU2wpd_wetuCO34hBFcaYW5ghGdTciGLsbgKrMPvqFwaziY-7zNMe_RvjgsHIrGlX_IKeARvDoAipbqKlBrfTw6DVoCjiqdlI-9-3mcUvhupEKVmc2XK_MOV-tvuFyPzZy9njzZ-PuFf8-7A0GqnxY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217873970</pqid></control><display><type>article</type><title>High-Throughput Flow Cytometric DNA Fragment Sizing</title><source>MEDLINE</source><source>ACS Publications</source><creator>Van Orden, Alan ; Keller, Richard A ; Ambrose, W. Patrick</creator><creatorcontrib>Van Orden, Alan ; Keller, Richard A ; Ambrose, W. Patrick</creatorcontrib><description>The rate of detection and sizing of individual fluorescently labeled DNA fragments in conventional single-molecule flow cytometry (SMFC) is limited by optical saturation, photon-counting statistics, and fragment overlap to ∼100 fragments/s. We have increased the detection rate for DNA fragment sizing in SMFC to ∼2000 fragments/s by parallel imaging of the fluorescence from individual DNA molecules, stained with a fluorescent intercalating dye, as they passed through a planar sheet of excitation laser light, resulting in order of magnitude improvements in the measurement speed and the sample throughput compared to conventional SMFC. Fluorescence bursts were measured from a fM solution of DNA fragments ranging in size from 7 to 154 kilobase pairs. A data acquisition time of only a few seconds was sufficient to determine the DNA fragment size distribution. A linear relationship between the number of detected photons per burst and the DNA fragment size was confirmed. Application of this parallel fluorescence imaging method will lead to improvements in the speed, throughput, and sensitivity of other types of flow-based analyses involving the study of single molecules, chromosomes, cells, etc.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac990782i</identifier><identifier>PMID: 10655632</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Bacteriophage lambda ; Bacteriophage M13 ; Biochemistry ; Biological and medical sciences ; Deoxyribonucleic acid ; Diverse techniques ; DNA ; DNA, Viral - analysis ; DNA, Viral - chemistry ; Flow Cytometry - methods ; Fluorescence ; Fundamental and applied biological sciences. Psychology ; Methods ; Molecular and cellular biology ; Nucleic Acid Conformation ; Scientific imaging ; single-molecule flow cytometry</subject><ispartof>Analytical chemistry (Washington), 2000-01, Vol.72 (1), p.37-41</ispartof><rights>Copyright © 2000 American Chemical Society</rights><rights>2001 INIST-CNRS</rights><rights>Copyright American Chemical Society Jan 1, 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a435t-18d12b0ab6192adfecb702ca173e79d26c2abc33633aba306407c9d905f376583</citedby><cites>FETCH-LOGICAL-a435t-18d12b0ab6192adfecb702ca173e79d26c2abc33633aba306407c9d905f376583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac990782i$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac990782i$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,4022,27074,27921,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=808603$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10655632$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Van Orden, Alan</creatorcontrib><creatorcontrib>Keller, Richard A</creatorcontrib><creatorcontrib>Ambrose, W. Patrick</creatorcontrib><title>High-Throughput Flow Cytometric DNA Fragment Sizing</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>The rate of detection and sizing of individual fluorescently labeled DNA fragments in conventional single-molecule flow cytometry (SMFC) is limited by optical saturation, photon-counting statistics, and fragment overlap to ∼100 fragments/s. We have increased the detection rate for DNA fragment sizing in SMFC to ∼2000 fragments/s by parallel imaging of the fluorescence from individual DNA molecules, stained with a fluorescent intercalating dye, as they passed through a planar sheet of excitation laser light, resulting in order of magnitude improvements in the measurement speed and the sample throughput compared to conventional SMFC. Fluorescence bursts were measured from a fM solution of DNA fragments ranging in size from 7 to 154 kilobase pairs. A data acquisition time of only a few seconds was sufficient to determine the DNA fragment size distribution. A linear relationship between the number of detected photons per burst and the DNA fragment size was confirmed. Application of this parallel fluorescence imaging method will lead to improvements in the speed, throughput, and sensitivity of other types of flow-based analyses involving the study of single molecules, chromosomes, cells, etc.</description><subject>Bacteriophage lambda</subject><subject>Bacteriophage M13</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Deoxyribonucleic acid</subject><subject>Diverse techniques</subject><subject>DNA</subject><subject>DNA, Viral - analysis</subject><subject>DNA, Viral - chemistry</subject><subject>Flow Cytometry - methods</subject><subject>Fluorescence</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Methods</subject><subject>Molecular and cellular biology</subject><subject>Nucleic Acid Conformation</subject><subject>Scientific imaging</subject><subject>single-molecule flow cytometry</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0E1v1DAQBmALgeiycOAPoAhEpR4CY8_Gdo5lYbdIFSB1uXCxJo6z65KPrZ0Iyq9vqqwWBAdOM9I8Gs28jD3n8IaD4G_J5jkoLfwDNuOZgFRqLR6yGQBgKhTACXsS4zUA58DlY3bCQWaZRDFjeOG3u3SzC92w3e2HPlnV3Y9kedt3jeuDt8n7T-fJKtC2cW2fXPlfvt0-ZY8qqqN7dqhz9nX1YbO8SC8_rz8uzy9TWmDWp1yXXBRAheS5oLJytlAgLHGFTuWlkFZQYRElIhWEIBegbF7mkFWoZKZxzk6nvfvQ3Qwu9qbx0bq6ptZ1QzQKtM614v-FXKkFikU2wpd_wetuCO34hBFcaYW5ghGdTciGLsbgKrMPvqFwaziY-7zNMe_RvjgsHIrGlX_IKeARvDoAipbqKlBrfTw6DVoCjiqdlI-9-3mcUvhupEKVmc2XK_MOV-tvuFyPzZy9njzZ-PuFf8-7A0GqnxY</recordid><startdate>20000101</startdate><enddate>20000101</enddate><creator>Van Orden, Alan</creator><creator>Keller, Richard A</creator><creator>Ambrose, W. Patrick</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20000101</creationdate><title>High-Throughput Flow Cytometric DNA Fragment Sizing</title><author>Van Orden, Alan ; Keller, Richard A ; Ambrose, W. Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a435t-18d12b0ab6192adfecb702ca173e79d26c2abc33633aba306407c9d905f376583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Bacteriophage lambda</topic><topic>Bacteriophage M13</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Deoxyribonucleic acid</topic><topic>Diverse techniques</topic><topic>DNA</topic><topic>DNA, Viral - analysis</topic><topic>DNA, Viral - chemistry</topic><topic>Flow Cytometry - methods</topic><topic>Fluorescence</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Methods</topic><topic>Molecular and cellular biology</topic><topic>Nucleic Acid Conformation</topic><topic>Scientific imaging</topic><topic>single-molecule flow cytometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Orden, Alan</creatorcontrib><creatorcontrib>Keller, Richard A</creatorcontrib><creatorcontrib>Ambrose, W. Patrick</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Orden, Alan</au><au>Keller, Richard A</au><au>Ambrose, W. Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Throughput Flow Cytometric DNA Fragment Sizing</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2000-01-01</date><risdate>2000</risdate><volume>72</volume><issue>1</issue><spage>37</spage><epage>41</epage><pages>37-41</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>The rate of detection and sizing of individual fluorescently labeled DNA fragments in conventional single-molecule flow cytometry (SMFC) is limited by optical saturation, photon-counting statistics, and fragment overlap to ∼100 fragments/s. We have increased the detection rate for DNA fragment sizing in SMFC to ∼2000 fragments/s by parallel imaging of the fluorescence from individual DNA molecules, stained with a fluorescent intercalating dye, as they passed through a planar sheet of excitation laser light, resulting in order of magnitude improvements in the measurement speed and the sample throughput compared to conventional SMFC. Fluorescence bursts were measured from a fM solution of DNA fragments ranging in size from 7 to 154 kilobase pairs. A data acquisition time of only a few seconds was sufficient to determine the DNA fragment size distribution. A linear relationship between the number of detected photons per burst and the DNA fragment size was confirmed. Application of this parallel fluorescence imaging method will lead to improvements in the speed, throughput, and sensitivity of other types of flow-based analyses involving the study of single molecules, chromosomes, cells, etc.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>10655632</pmid><doi>10.1021/ac990782i</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2000-01, Vol.72 (1), p.37-41 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_70889871 |
source | MEDLINE; ACS Publications |
subjects | Bacteriophage lambda Bacteriophage M13 Biochemistry Biological and medical sciences Deoxyribonucleic acid Diverse techniques DNA DNA, Viral - analysis DNA, Viral - chemistry Flow Cytometry - methods Fluorescence Fundamental and applied biological sciences. Psychology Methods Molecular and cellular biology Nucleic Acid Conformation Scientific imaging single-molecule flow cytometry |
title | High-Throughput Flow Cytometric DNA Fragment Sizing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T07%3A22%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Throughput%20Flow%20Cytometric%20DNA%20Fragment%20Sizing&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Van%20Orden,%20Alan&rft.date=2000-01-01&rft.volume=72&rft.issue=1&rft.spage=37&rft.epage=41&rft.pages=37-41&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac990782i&rft_dat=%3Cproquest_cross%3E48132228%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217873970&rft_id=info:pmid/10655632&rfr_iscdi=true |