High-Throughput Flow Cytometric DNA Fragment Sizing

The rate of detection and sizing of individual fluorescently labeled DNA fragments in conventional single-molecule flow cytometry (SMFC) is limited by optical saturation, photon-counting statistics, and fragment overlap to ∼100 fragments/s. We have increased the detection rate for DNA fragment sizin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2000-01, Vol.72 (1), p.37-41
Hauptverfasser: Van Orden, Alan, Keller, Richard A, Ambrose, W. Patrick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 41
container_issue 1
container_start_page 37
container_title Analytical chemistry (Washington)
container_volume 72
creator Van Orden, Alan
Keller, Richard A
Ambrose, W. Patrick
description The rate of detection and sizing of individual fluorescently labeled DNA fragments in conventional single-molecule flow cytometry (SMFC) is limited by optical saturation, photon-counting statistics, and fragment overlap to ∼100 fragments/s. We have increased the detection rate for DNA fragment sizing in SMFC to ∼2000 fragments/s by parallel imaging of the fluorescence from individual DNA molecules, stained with a fluorescent intercalating dye, as they passed through a planar sheet of excitation laser light, resulting in order of magnitude improvements in the measurement speed and the sample throughput compared to conventional SMFC. Fluorescence bursts were measured from a fM solution of DNA fragments ranging in size from 7 to 154 kilobase pairs. A data acquisition time of only a few seconds was sufficient to determine the DNA fragment size distribution. A linear relationship between the number of detected photons per burst and the DNA fragment size was confirmed. Application of this parallel fluorescence imaging method will lead to improvements in the speed, throughput, and sensitivity of other types of flow-based analyses involving the study of single molecules, chromosomes, cells, etc.
doi_str_mv 10.1021/ac990782i
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70889871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>48132228</sourcerecordid><originalsourceid>FETCH-LOGICAL-a435t-18d12b0ab6192adfecb702ca173e79d26c2abc33633aba306407c9d905f376583</originalsourceid><addsrcrecordid>eNqF0E1v1DAQBmALgeiycOAPoAhEpR4CY8_Gdo5lYbdIFSB1uXCxJo6z65KPrZ0Iyq9vqqwWBAdOM9I8Gs28jD3n8IaD4G_J5jkoLfwDNuOZgFRqLR6yGQBgKhTACXsS4zUA58DlY3bCQWaZRDFjeOG3u3SzC92w3e2HPlnV3Y9kedt3jeuDt8n7T-fJKtC2cW2fXPlfvt0-ZY8qqqN7dqhz9nX1YbO8SC8_rz8uzy9TWmDWp1yXXBRAheS5oLJytlAgLHGFTuWlkFZQYRElIhWEIBegbF7mkFWoZKZxzk6nvfvQ3Qwu9qbx0bq6ptZ1QzQKtM614v-FXKkFikU2wpd_wetuCO34hBFcaYW5ghGdTciGLsbgKrMPvqFwaziY-7zNMe_RvjgsHIrGlX_IKeARvDoAipbqKlBrfTw6DVoCjiqdlI-9-3mcUvhupEKVmc2XK_MOV-tvuFyPzZy9njzZ-PuFf8-7A0GqnxY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217873970</pqid></control><display><type>article</type><title>High-Throughput Flow Cytometric DNA Fragment Sizing</title><source>MEDLINE</source><source>ACS Publications</source><creator>Van Orden, Alan ; Keller, Richard A ; Ambrose, W. Patrick</creator><creatorcontrib>Van Orden, Alan ; Keller, Richard A ; Ambrose, W. Patrick</creatorcontrib><description>The rate of detection and sizing of individual fluorescently labeled DNA fragments in conventional single-molecule flow cytometry (SMFC) is limited by optical saturation, photon-counting statistics, and fragment overlap to ∼100 fragments/s. We have increased the detection rate for DNA fragment sizing in SMFC to ∼2000 fragments/s by parallel imaging of the fluorescence from individual DNA molecules, stained with a fluorescent intercalating dye, as they passed through a planar sheet of excitation laser light, resulting in order of magnitude improvements in the measurement speed and the sample throughput compared to conventional SMFC. Fluorescence bursts were measured from a fM solution of DNA fragments ranging in size from 7 to 154 kilobase pairs. A data acquisition time of only a few seconds was sufficient to determine the DNA fragment size distribution. A linear relationship between the number of detected photons per burst and the DNA fragment size was confirmed. Application of this parallel fluorescence imaging method will lead to improvements in the speed, throughput, and sensitivity of other types of flow-based analyses involving the study of single molecules, chromosomes, cells, etc.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac990782i</identifier><identifier>PMID: 10655632</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Bacteriophage lambda ; Bacteriophage M13 ; Biochemistry ; Biological and medical sciences ; Deoxyribonucleic acid ; Diverse techniques ; DNA ; DNA, Viral - analysis ; DNA, Viral - chemistry ; Flow Cytometry - methods ; Fluorescence ; Fundamental and applied biological sciences. Psychology ; Methods ; Molecular and cellular biology ; Nucleic Acid Conformation ; Scientific imaging ; single-molecule flow cytometry</subject><ispartof>Analytical chemistry (Washington), 2000-01, Vol.72 (1), p.37-41</ispartof><rights>Copyright © 2000 American Chemical Society</rights><rights>2001 INIST-CNRS</rights><rights>Copyright American Chemical Society Jan 1, 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a435t-18d12b0ab6192adfecb702ca173e79d26c2abc33633aba306407c9d905f376583</citedby><cites>FETCH-LOGICAL-a435t-18d12b0ab6192adfecb702ca173e79d26c2abc33633aba306407c9d905f376583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac990782i$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac990782i$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,4022,27074,27921,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=808603$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10655632$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Van Orden, Alan</creatorcontrib><creatorcontrib>Keller, Richard A</creatorcontrib><creatorcontrib>Ambrose, W. Patrick</creatorcontrib><title>High-Throughput Flow Cytometric DNA Fragment Sizing</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>The rate of detection and sizing of individual fluorescently labeled DNA fragments in conventional single-molecule flow cytometry (SMFC) is limited by optical saturation, photon-counting statistics, and fragment overlap to ∼100 fragments/s. We have increased the detection rate for DNA fragment sizing in SMFC to ∼2000 fragments/s by parallel imaging of the fluorescence from individual DNA molecules, stained with a fluorescent intercalating dye, as they passed through a planar sheet of excitation laser light, resulting in order of magnitude improvements in the measurement speed and the sample throughput compared to conventional SMFC. Fluorescence bursts were measured from a fM solution of DNA fragments ranging in size from 7 to 154 kilobase pairs. A data acquisition time of only a few seconds was sufficient to determine the DNA fragment size distribution. A linear relationship between the number of detected photons per burst and the DNA fragment size was confirmed. Application of this parallel fluorescence imaging method will lead to improvements in the speed, throughput, and sensitivity of other types of flow-based analyses involving the study of single molecules, chromosomes, cells, etc.</description><subject>Bacteriophage lambda</subject><subject>Bacteriophage M13</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Deoxyribonucleic acid</subject><subject>Diverse techniques</subject><subject>DNA</subject><subject>DNA, Viral - analysis</subject><subject>DNA, Viral - chemistry</subject><subject>Flow Cytometry - methods</subject><subject>Fluorescence</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Methods</subject><subject>Molecular and cellular biology</subject><subject>Nucleic Acid Conformation</subject><subject>Scientific imaging</subject><subject>single-molecule flow cytometry</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0E1v1DAQBmALgeiycOAPoAhEpR4CY8_Gdo5lYbdIFSB1uXCxJo6z65KPrZ0Iyq9vqqwWBAdOM9I8Gs28jD3n8IaD4G_J5jkoLfwDNuOZgFRqLR6yGQBgKhTACXsS4zUA58DlY3bCQWaZRDFjeOG3u3SzC92w3e2HPlnV3Y9kedt3jeuDt8n7T-fJKtC2cW2fXPlfvt0-ZY8qqqN7dqhz9nX1YbO8SC8_rz8uzy9TWmDWp1yXXBRAheS5oLJytlAgLHGFTuWlkFZQYRElIhWEIBegbF7mkFWoZKZxzk6nvfvQ3Qwu9qbx0bq6ptZ1QzQKtM614v-FXKkFikU2wpd_wetuCO34hBFcaYW5ghGdTciGLsbgKrMPvqFwaziY-7zNMe_RvjgsHIrGlX_IKeARvDoAipbqKlBrfTw6DVoCjiqdlI-9-3mcUvhupEKVmc2XK_MOV-tvuFyPzZy9njzZ-PuFf8-7A0GqnxY</recordid><startdate>20000101</startdate><enddate>20000101</enddate><creator>Van Orden, Alan</creator><creator>Keller, Richard A</creator><creator>Ambrose, W. Patrick</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20000101</creationdate><title>High-Throughput Flow Cytometric DNA Fragment Sizing</title><author>Van Orden, Alan ; Keller, Richard A ; Ambrose, W. Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a435t-18d12b0ab6192adfecb702ca173e79d26c2abc33633aba306407c9d905f376583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Bacteriophage lambda</topic><topic>Bacteriophage M13</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Deoxyribonucleic acid</topic><topic>Diverse techniques</topic><topic>DNA</topic><topic>DNA, Viral - analysis</topic><topic>DNA, Viral - chemistry</topic><topic>Flow Cytometry - methods</topic><topic>Fluorescence</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Methods</topic><topic>Molecular and cellular biology</topic><topic>Nucleic Acid Conformation</topic><topic>Scientific imaging</topic><topic>single-molecule flow cytometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Orden, Alan</creatorcontrib><creatorcontrib>Keller, Richard A</creatorcontrib><creatorcontrib>Ambrose, W. Patrick</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Orden, Alan</au><au>Keller, Richard A</au><au>Ambrose, W. Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Throughput Flow Cytometric DNA Fragment Sizing</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2000-01-01</date><risdate>2000</risdate><volume>72</volume><issue>1</issue><spage>37</spage><epage>41</epage><pages>37-41</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>The rate of detection and sizing of individual fluorescently labeled DNA fragments in conventional single-molecule flow cytometry (SMFC) is limited by optical saturation, photon-counting statistics, and fragment overlap to ∼100 fragments/s. We have increased the detection rate for DNA fragment sizing in SMFC to ∼2000 fragments/s by parallel imaging of the fluorescence from individual DNA molecules, stained with a fluorescent intercalating dye, as they passed through a planar sheet of excitation laser light, resulting in order of magnitude improvements in the measurement speed and the sample throughput compared to conventional SMFC. Fluorescence bursts were measured from a fM solution of DNA fragments ranging in size from 7 to 154 kilobase pairs. A data acquisition time of only a few seconds was sufficient to determine the DNA fragment size distribution. A linear relationship between the number of detected photons per burst and the DNA fragment size was confirmed. Application of this parallel fluorescence imaging method will lead to improvements in the speed, throughput, and sensitivity of other types of flow-based analyses involving the study of single molecules, chromosomes, cells, etc.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>10655632</pmid><doi>10.1021/ac990782i</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2000-01, Vol.72 (1), p.37-41
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_70889871
source MEDLINE; ACS Publications
subjects Bacteriophage lambda
Bacteriophage M13
Biochemistry
Biological and medical sciences
Deoxyribonucleic acid
Diverse techniques
DNA
DNA, Viral - analysis
DNA, Viral - chemistry
Flow Cytometry - methods
Fluorescence
Fundamental and applied biological sciences. Psychology
Methods
Molecular and cellular biology
Nucleic Acid Conformation
Scientific imaging
single-molecule flow cytometry
title High-Throughput Flow Cytometric DNA Fragment Sizing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T07%3A22%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Throughput%20Flow%20Cytometric%20DNA%20Fragment%20Sizing&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Van%20Orden,%20Alan&rft.date=2000-01-01&rft.volume=72&rft.issue=1&rft.spage=37&rft.epage=41&rft.pages=37-41&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac990782i&rft_dat=%3Cproquest_cross%3E48132228%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217873970&rft_id=info:pmid/10655632&rfr_iscdi=true