Interhelical hydrogen bonding drives strong interactions in membrane proteins
Polar residues in transmembrane α-helices may strongly influence the folding or association of integral membrane proteins. To test whether a motif that promotes helix association in a soluble protein could do the same within a membrane, we designed a model transmembrane helix based on the GCN4 leuci...
Gespeichert in:
Veröffentlicht in: | Nature Structural Biology 2000-02, Vol.7 (2), p.154-160 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 160 |
---|---|
container_issue | 2 |
container_start_page | 154 |
container_title | Nature Structural Biology |
container_volume | 7 |
creator | Xiao Zhou, Fang Cocco, Melanie J. Russ, William P. Brunger, Axel T. Engelman, Donald M. |
description | Polar residues in transmembrane α-helices may strongly influence the folding or association of integral membrane proteins. To test whether a motif that promotes helix association in a soluble protein could do the same within a membrane, we designed a model transmembrane helix based on the GCN4 leucine zipper. We found in both detergent miscelles and biological membranes that helix association is driven strongly by asparagine, independent of the rest of the hydrophobic leucine and/or valine sequence. Hydrogen bonding between membrane helices gives stronger associations than the packing of surfaces in glycophorin A helices, creating an opportunity to stabilize structures, but also implying a danger that non-specific interactions might occur. Thus, membrane proteins may fold to avoid exposure of strongly hydrogen bonding groups at their lipid exposed surfaces. |
doi_str_mv | 10.1038/72430 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_70889507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70889507</sourcerecordid><originalsourceid>FETCH-LOGICAL-p265t-7a11f2e74159369c453163cd2fc7eed1e51b1a795c045e97576f2f781e4d42013</originalsourceid><addsrcrecordid>eNpdkElPwzAQhS0EoqX0L6CIA7eAx0tsH1HFUqmIC5yjLJPWVeIUO0Hqv8dlUSVOM6P59N7TI2QO9BYo13eKCU5PyBSkkKkxWp7GnSqWap7pCbkIYUspk1LxczIBmkmZgZmSl6Ub0G-wtVXRJpt97fs1uqTsXW3dOqm9_cSQhMH38bIHtqgG27sQj6TDrvSFw2Tn-wGtC5fkrCnagPPfOSPvjw9vi-d09fq0XNyv0h3L5JCqAqBhqARIwzNTCckh41XNmkoh1oASSiiUkRUVEo2SKmtYozSgqAWjwGfk5kc3Gn-MGIa8s6HCto1h-jHkimptJFURvP4HbvvRu5gtZ0wzbQTwCF39QmPZYZ3vvO0Kv8__Wjrahfhya_RHFaD5of78u37-BUEmczs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>228289413</pqid></control><display><type>article</type><title>Interhelical hydrogen bonding drives strong interactions in membrane proteins</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Xiao Zhou, Fang ; Cocco, Melanie J. ; Russ, William P. ; Brunger, Axel T. ; Engelman, Donald M.</creator><creatorcontrib>Xiao Zhou, Fang ; Cocco, Melanie J. ; Russ, William P. ; Brunger, Axel T. ; Engelman, Donald M.</creatorcontrib><description>Polar residues in transmembrane α-helices may strongly influence the folding or association of integral membrane proteins. To test whether a motif that promotes helix association in a soluble protein could do the same within a membrane, we designed a model transmembrane helix based on the GCN4 leucine zipper. We found in both detergent miscelles and biological membranes that helix association is driven strongly by asparagine, independent of the rest of the hydrophobic leucine and/or valine sequence. Hydrogen bonding between membrane helices gives stronger associations than the packing of surfaces in glycophorin A helices, creating an opportunity to stabilize structures, but also implying a danger that non-specific interactions might occur. Thus, membrane proteins may fold to avoid exposure of strongly hydrogen bonding groups at their lipid exposed surfaces.</description><identifier>ISSN: 1072-8368</identifier><identifier>ISSN: 1545-9993</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/72430</identifier><identifier>PMID: 10655619</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Amino Acid Motifs ; Amino Acid Sequence ; Asparagine - chemistry ; Biochemistry ; Biological membranes ; Biological Microscopy ; Biomedical and Life Sciences ; Cell Membrane - metabolism ; Chloramphenicol O-Acetyltransferase - chemistry ; Chloramphenicol O-Acetyltransferase - genetics ; Chloramphenicol O-Acetyltransferase - metabolism ; Circular Dichroism ; Detergents - chemistry ; Dimerization ; DNA-Binding Proteins ; Electrophoresis, Polyacrylamide Gel ; Fungal Proteins - chemistry ; Glycophorin - chemistry ; Glycophorin - genetics ; Glycophorin - metabolism ; Hydrogen ; Hydrogen Bonding ; Leucine Zippers ; Life Sciences ; Magnetic Resonance Spectroscopy ; Membrane Biology ; Membrane Proteins - chemistry ; Membrane Proteins - metabolism ; Micelles ; Micrococcal Nuclease - chemistry ; Molecular Sequence Data ; Peptides - chemistry ; Protein Conformation ; Protein Kinases - chemistry ; Protein Structure ; Protein Structure, Secondary ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Saccharomyces cerevisiae Proteins</subject><ispartof>Nature Structural Biology, 2000-02, Vol.7 (2), p.154-160</ispartof><rights>Nature America Inc. 2000</rights><rights>Copyright Nature Publishing Group Feb 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/72430$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/72430$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10655619$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiao Zhou, Fang</creatorcontrib><creatorcontrib>Cocco, Melanie J.</creatorcontrib><creatorcontrib>Russ, William P.</creatorcontrib><creatorcontrib>Brunger, Axel T.</creatorcontrib><creatorcontrib>Engelman, Donald M.</creatorcontrib><title>Interhelical hydrogen bonding drives strong interactions in membrane proteins</title><title>Nature Structural Biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Biol</addtitle><description>Polar residues in transmembrane α-helices may strongly influence the folding or association of integral membrane proteins. To test whether a motif that promotes helix association in a soluble protein could do the same within a membrane, we designed a model transmembrane helix based on the GCN4 leucine zipper. We found in both detergent miscelles and biological membranes that helix association is driven strongly by asparagine, independent of the rest of the hydrophobic leucine and/or valine sequence. Hydrogen bonding between membrane helices gives stronger associations than the packing of surfaces in glycophorin A helices, creating an opportunity to stabilize structures, but also implying a danger that non-specific interactions might occur. Thus, membrane proteins may fold to avoid exposure of strongly hydrogen bonding groups at their lipid exposed surfaces.</description><subject>Amino Acid Motifs</subject><subject>Amino Acid Sequence</subject><subject>Asparagine - chemistry</subject><subject>Biochemistry</subject><subject>Biological membranes</subject><subject>Biological Microscopy</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Membrane - metabolism</subject><subject>Chloramphenicol O-Acetyltransferase - chemistry</subject><subject>Chloramphenicol O-Acetyltransferase - genetics</subject><subject>Chloramphenicol O-Acetyltransferase - metabolism</subject><subject>Circular Dichroism</subject><subject>Detergents - chemistry</subject><subject>Dimerization</subject><subject>DNA-Binding Proteins</subject><subject>Electrophoresis, Polyacrylamide Gel</subject><subject>Fungal Proteins - chemistry</subject><subject>Glycophorin - chemistry</subject><subject>Glycophorin - genetics</subject><subject>Glycophorin - metabolism</subject><subject>Hydrogen</subject><subject>Hydrogen Bonding</subject><subject>Leucine Zippers</subject><subject>Life Sciences</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Membrane Biology</subject><subject>Membrane Proteins - chemistry</subject><subject>Membrane Proteins - metabolism</subject><subject>Micelles</subject><subject>Micrococcal Nuclease - chemistry</subject><subject>Molecular Sequence Data</subject><subject>Peptides - chemistry</subject><subject>Protein Conformation</subject><subject>Protein Kinases - chemistry</subject><subject>Protein Structure</subject><subject>Protein Structure, Secondary</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Saccharomyces cerevisiae Proteins</subject><issn>1072-8368</issn><issn>1545-9993</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkElPwzAQhS0EoqX0L6CIA7eAx0tsH1HFUqmIC5yjLJPWVeIUO0Hqv8dlUSVOM6P59N7TI2QO9BYo13eKCU5PyBSkkKkxWp7GnSqWap7pCbkIYUspk1LxczIBmkmZgZmSl6Ub0G-wtVXRJpt97fs1uqTsXW3dOqm9_cSQhMH38bIHtqgG27sQj6TDrvSFw2Tn-wGtC5fkrCnagPPfOSPvjw9vi-d09fq0XNyv0h3L5JCqAqBhqARIwzNTCckh41XNmkoh1oASSiiUkRUVEo2SKmtYozSgqAWjwGfk5kc3Gn-MGIa8s6HCto1h-jHkimptJFURvP4HbvvRu5gtZ0wzbQTwCF39QmPZYZ3vvO0Kv8__Wjrahfhya_RHFaD5of78u37-BUEmczs</recordid><startdate>20000201</startdate><enddate>20000201</enddate><creator>Xiao Zhou, Fang</creator><creator>Cocco, Melanie J.</creator><creator>Russ, William P.</creator><creator>Brunger, Axel T.</creator><creator>Engelman, Donald M.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20000201</creationdate><title>Interhelical hydrogen bonding drives strong interactions in membrane proteins</title><author>Xiao Zhou, Fang ; Cocco, Melanie J. ; Russ, William P. ; Brunger, Axel T. ; Engelman, Donald M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p265t-7a11f2e74159369c453163cd2fc7eed1e51b1a795c045e97576f2f781e4d42013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Amino Acid Motifs</topic><topic>Amino Acid Sequence</topic><topic>Asparagine - chemistry</topic><topic>Biochemistry</topic><topic>Biological membranes</topic><topic>Biological Microscopy</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Membrane - metabolism</topic><topic>Chloramphenicol O-Acetyltransferase - chemistry</topic><topic>Chloramphenicol O-Acetyltransferase - genetics</topic><topic>Chloramphenicol O-Acetyltransferase - metabolism</topic><topic>Circular Dichroism</topic><topic>Detergents - chemistry</topic><topic>Dimerization</topic><topic>DNA-Binding Proteins</topic><topic>Electrophoresis, Polyacrylamide Gel</topic><topic>Fungal Proteins - chemistry</topic><topic>Glycophorin - chemistry</topic><topic>Glycophorin - genetics</topic><topic>Glycophorin - metabolism</topic><topic>Hydrogen</topic><topic>Hydrogen Bonding</topic><topic>Leucine Zippers</topic><topic>Life Sciences</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Membrane Biology</topic><topic>Membrane Proteins - chemistry</topic><topic>Membrane Proteins - metabolism</topic><topic>Micelles</topic><topic>Micrococcal Nuclease - chemistry</topic><topic>Molecular Sequence Data</topic><topic>Peptides - chemistry</topic><topic>Protein Conformation</topic><topic>Protein Kinases - chemistry</topic><topic>Protein Structure</topic><topic>Protein Structure, Secondary</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Saccharomyces cerevisiae Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao Zhou, Fang</creatorcontrib><creatorcontrib>Cocco, Melanie J.</creatorcontrib><creatorcontrib>Russ, William P.</creatorcontrib><creatorcontrib>Brunger, Axel T.</creatorcontrib><creatorcontrib>Engelman, Donald M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature Structural Biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao Zhou, Fang</au><au>Cocco, Melanie J.</au><au>Russ, William P.</au><au>Brunger, Axel T.</au><au>Engelman, Donald M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interhelical hydrogen bonding drives strong interactions in membrane proteins</atitle><jtitle>Nature Structural Biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Biol</addtitle><date>2000-02-01</date><risdate>2000</risdate><volume>7</volume><issue>2</issue><spage>154</spage><epage>160</epage><pages>154-160</pages><issn>1072-8368</issn><issn>1545-9993</issn><eissn>1545-9985</eissn><abstract>Polar residues in transmembrane α-helices may strongly influence the folding or association of integral membrane proteins. To test whether a motif that promotes helix association in a soluble protein could do the same within a membrane, we designed a model transmembrane helix based on the GCN4 leucine zipper. We found in both detergent miscelles and biological membranes that helix association is driven strongly by asparagine, independent of the rest of the hydrophobic leucine and/or valine sequence. Hydrogen bonding between membrane helices gives stronger associations than the packing of surfaces in glycophorin A helices, creating an opportunity to stabilize structures, but also implying a danger that non-specific interactions might occur. Thus, membrane proteins may fold to avoid exposure of strongly hydrogen bonding groups at their lipid exposed surfaces.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>10655619</pmid><doi>10.1038/72430</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-8368 |
ispartof | Nature Structural Biology, 2000-02, Vol.7 (2), p.154-160 |
issn | 1072-8368 1545-9993 1545-9985 |
language | eng |
recordid | cdi_proquest_miscellaneous_70889507 |
source | MEDLINE; SpringerLink Journals; Nature Journals Online |
subjects | Amino Acid Motifs Amino Acid Sequence Asparagine - chemistry Biochemistry Biological membranes Biological Microscopy Biomedical and Life Sciences Cell Membrane - metabolism Chloramphenicol O-Acetyltransferase - chemistry Chloramphenicol O-Acetyltransferase - genetics Chloramphenicol O-Acetyltransferase - metabolism Circular Dichroism Detergents - chemistry Dimerization DNA-Binding Proteins Electrophoresis, Polyacrylamide Gel Fungal Proteins - chemistry Glycophorin - chemistry Glycophorin - genetics Glycophorin - metabolism Hydrogen Hydrogen Bonding Leucine Zippers Life Sciences Magnetic Resonance Spectroscopy Membrane Biology Membrane Proteins - chemistry Membrane Proteins - metabolism Micelles Micrococcal Nuclease - chemistry Molecular Sequence Data Peptides - chemistry Protein Conformation Protein Kinases - chemistry Protein Structure Protein Structure, Secondary Recombinant Proteins - chemistry Recombinant Proteins - genetics Recombinant Proteins - metabolism Saccharomyces cerevisiae Proteins |
title | Interhelical hydrogen bonding drives strong interactions in membrane proteins |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A36%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interhelical%20hydrogen%20bonding%20drives%20strong%20interactions%20in%20membrane%20proteins&rft.jtitle=Nature%20Structural%20Biology&rft.au=Xiao%20Zhou,%20Fang&rft.date=2000-02-01&rft.volume=7&rft.issue=2&rft.spage=154&rft.epage=160&rft.pages=154-160&rft.issn=1072-8368&rft.eissn=1545-9985&rft_id=info:doi/10.1038/72430&rft_dat=%3Cproquest_pubme%3E70889507%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=228289413&rft_id=info:pmid/10655619&rfr_iscdi=true |