Interhelical hydrogen bonding drives strong interactions in membrane proteins

Polar residues in transmembrane α-helices may strongly influence the folding or association of integral membrane proteins. To test whether a motif that promotes helix association in a soluble protein could do the same within a membrane, we designed a model transmembrane helix based on the GCN4 leuci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature Structural Biology 2000-02, Vol.7 (2), p.154-160
Hauptverfasser: Xiao Zhou, Fang, Cocco, Melanie J., Russ, William P., Brunger, Axel T., Engelman, Donald M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 160
container_issue 2
container_start_page 154
container_title Nature Structural Biology
container_volume 7
creator Xiao Zhou, Fang
Cocco, Melanie J.
Russ, William P.
Brunger, Axel T.
Engelman, Donald M.
description Polar residues in transmembrane α-helices may strongly influence the folding or association of integral membrane proteins. To test whether a motif that promotes helix association in a soluble protein could do the same within a membrane, we designed a model transmembrane helix based on the GCN4 leucine zipper. We found in both detergent miscelles and biological membranes that helix association is driven strongly by asparagine, independent of the rest of the hydrophobic leucine and/or valine sequence. Hydrogen bonding between membrane helices gives stronger associations than the packing of surfaces in glycophorin A helices, creating an opportunity to stabilize structures, but also implying a danger that non-specific interactions might occur. Thus, membrane proteins may fold to avoid exposure of strongly hydrogen bonding groups at their lipid exposed surfaces.
doi_str_mv 10.1038/72430
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_70889507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70889507</sourcerecordid><originalsourceid>FETCH-LOGICAL-p265t-7a11f2e74159369c453163cd2fc7eed1e51b1a795c045e97576f2f781e4d42013</originalsourceid><addsrcrecordid>eNpdkElPwzAQhS0EoqX0L6CIA7eAx0tsH1HFUqmIC5yjLJPWVeIUO0Hqv8dlUSVOM6P59N7TI2QO9BYo13eKCU5PyBSkkKkxWp7GnSqWap7pCbkIYUspk1LxczIBmkmZgZmSl6Ub0G-wtVXRJpt97fs1uqTsXW3dOqm9_cSQhMH38bIHtqgG27sQj6TDrvSFw2Tn-wGtC5fkrCnagPPfOSPvjw9vi-d09fq0XNyv0h3L5JCqAqBhqARIwzNTCckh41XNmkoh1oASSiiUkRUVEo2SKmtYozSgqAWjwGfk5kc3Gn-MGIa8s6HCto1h-jHkimptJFURvP4HbvvRu5gtZ0wzbQTwCF39QmPZYZ3vvO0Kv8__Wjrahfhya_RHFaD5of78u37-BUEmczs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>228289413</pqid></control><display><type>article</type><title>Interhelical hydrogen bonding drives strong interactions in membrane proteins</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Xiao Zhou, Fang ; Cocco, Melanie J. ; Russ, William P. ; Brunger, Axel T. ; Engelman, Donald M.</creator><creatorcontrib>Xiao Zhou, Fang ; Cocco, Melanie J. ; Russ, William P. ; Brunger, Axel T. ; Engelman, Donald M.</creatorcontrib><description>Polar residues in transmembrane α-helices may strongly influence the folding or association of integral membrane proteins. To test whether a motif that promotes helix association in a soluble protein could do the same within a membrane, we designed a model transmembrane helix based on the GCN4 leucine zipper. We found in both detergent miscelles and biological membranes that helix association is driven strongly by asparagine, independent of the rest of the hydrophobic leucine and/or valine sequence. Hydrogen bonding between membrane helices gives stronger associations than the packing of surfaces in glycophorin A helices, creating an opportunity to stabilize structures, but also implying a danger that non-specific interactions might occur. Thus, membrane proteins may fold to avoid exposure of strongly hydrogen bonding groups at their lipid exposed surfaces.</description><identifier>ISSN: 1072-8368</identifier><identifier>ISSN: 1545-9993</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/72430</identifier><identifier>PMID: 10655619</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Amino Acid Motifs ; Amino Acid Sequence ; Asparagine - chemistry ; Biochemistry ; Biological membranes ; Biological Microscopy ; Biomedical and Life Sciences ; Cell Membrane - metabolism ; Chloramphenicol O-Acetyltransferase - chemistry ; Chloramphenicol O-Acetyltransferase - genetics ; Chloramphenicol O-Acetyltransferase - metabolism ; Circular Dichroism ; Detergents - chemistry ; Dimerization ; DNA-Binding Proteins ; Electrophoresis, Polyacrylamide Gel ; Fungal Proteins - chemistry ; Glycophorin - chemistry ; Glycophorin - genetics ; Glycophorin - metabolism ; Hydrogen ; Hydrogen Bonding ; Leucine Zippers ; Life Sciences ; Magnetic Resonance Spectroscopy ; Membrane Biology ; Membrane Proteins - chemistry ; Membrane Proteins - metabolism ; Micelles ; Micrococcal Nuclease - chemistry ; Molecular Sequence Data ; Peptides - chemistry ; Protein Conformation ; Protein Kinases - chemistry ; Protein Structure ; Protein Structure, Secondary ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Saccharomyces cerevisiae Proteins</subject><ispartof>Nature Structural Biology, 2000-02, Vol.7 (2), p.154-160</ispartof><rights>Nature America Inc. 2000</rights><rights>Copyright Nature Publishing Group Feb 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/72430$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/72430$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10655619$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiao Zhou, Fang</creatorcontrib><creatorcontrib>Cocco, Melanie J.</creatorcontrib><creatorcontrib>Russ, William P.</creatorcontrib><creatorcontrib>Brunger, Axel T.</creatorcontrib><creatorcontrib>Engelman, Donald M.</creatorcontrib><title>Interhelical hydrogen bonding drives strong interactions in membrane proteins</title><title>Nature Structural Biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Biol</addtitle><description>Polar residues in transmembrane α-helices may strongly influence the folding or association of integral membrane proteins. To test whether a motif that promotes helix association in a soluble protein could do the same within a membrane, we designed a model transmembrane helix based on the GCN4 leucine zipper. We found in both detergent miscelles and biological membranes that helix association is driven strongly by asparagine, independent of the rest of the hydrophobic leucine and/or valine sequence. Hydrogen bonding between membrane helices gives stronger associations than the packing of surfaces in glycophorin A helices, creating an opportunity to stabilize structures, but also implying a danger that non-specific interactions might occur. Thus, membrane proteins may fold to avoid exposure of strongly hydrogen bonding groups at their lipid exposed surfaces.</description><subject>Amino Acid Motifs</subject><subject>Amino Acid Sequence</subject><subject>Asparagine - chemistry</subject><subject>Biochemistry</subject><subject>Biological membranes</subject><subject>Biological Microscopy</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Membrane - metabolism</subject><subject>Chloramphenicol O-Acetyltransferase - chemistry</subject><subject>Chloramphenicol O-Acetyltransferase - genetics</subject><subject>Chloramphenicol O-Acetyltransferase - metabolism</subject><subject>Circular Dichroism</subject><subject>Detergents - chemistry</subject><subject>Dimerization</subject><subject>DNA-Binding Proteins</subject><subject>Electrophoresis, Polyacrylamide Gel</subject><subject>Fungal Proteins - chemistry</subject><subject>Glycophorin - chemistry</subject><subject>Glycophorin - genetics</subject><subject>Glycophorin - metabolism</subject><subject>Hydrogen</subject><subject>Hydrogen Bonding</subject><subject>Leucine Zippers</subject><subject>Life Sciences</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Membrane Biology</subject><subject>Membrane Proteins - chemistry</subject><subject>Membrane Proteins - metabolism</subject><subject>Micelles</subject><subject>Micrococcal Nuclease - chemistry</subject><subject>Molecular Sequence Data</subject><subject>Peptides - chemistry</subject><subject>Protein Conformation</subject><subject>Protein Kinases - chemistry</subject><subject>Protein Structure</subject><subject>Protein Structure, Secondary</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Saccharomyces cerevisiae Proteins</subject><issn>1072-8368</issn><issn>1545-9993</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkElPwzAQhS0EoqX0L6CIA7eAx0tsH1HFUqmIC5yjLJPWVeIUO0Hqv8dlUSVOM6P59N7TI2QO9BYo13eKCU5PyBSkkKkxWp7GnSqWap7pCbkIYUspk1LxczIBmkmZgZmSl6Ub0G-wtVXRJpt97fs1uqTsXW3dOqm9_cSQhMH38bIHtqgG27sQj6TDrvSFw2Tn-wGtC5fkrCnagPPfOSPvjw9vi-d09fq0XNyv0h3L5JCqAqBhqARIwzNTCckh41XNmkoh1oASSiiUkRUVEo2SKmtYozSgqAWjwGfk5kc3Gn-MGIa8s6HCto1h-jHkimptJFURvP4HbvvRu5gtZ0wzbQTwCF39QmPZYZ3vvO0Kv8__Wjrahfhya_RHFaD5of78u37-BUEmczs</recordid><startdate>20000201</startdate><enddate>20000201</enddate><creator>Xiao Zhou, Fang</creator><creator>Cocco, Melanie J.</creator><creator>Russ, William P.</creator><creator>Brunger, Axel T.</creator><creator>Engelman, Donald M.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20000201</creationdate><title>Interhelical hydrogen bonding drives strong interactions in membrane proteins</title><author>Xiao Zhou, Fang ; Cocco, Melanie J. ; Russ, William P. ; Brunger, Axel T. ; Engelman, Donald M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p265t-7a11f2e74159369c453163cd2fc7eed1e51b1a795c045e97576f2f781e4d42013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Amino Acid Motifs</topic><topic>Amino Acid Sequence</topic><topic>Asparagine - chemistry</topic><topic>Biochemistry</topic><topic>Biological membranes</topic><topic>Biological Microscopy</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Membrane - metabolism</topic><topic>Chloramphenicol O-Acetyltransferase - chemistry</topic><topic>Chloramphenicol O-Acetyltransferase - genetics</topic><topic>Chloramphenicol O-Acetyltransferase - metabolism</topic><topic>Circular Dichroism</topic><topic>Detergents - chemistry</topic><topic>Dimerization</topic><topic>DNA-Binding Proteins</topic><topic>Electrophoresis, Polyacrylamide Gel</topic><topic>Fungal Proteins - chemistry</topic><topic>Glycophorin - chemistry</topic><topic>Glycophorin - genetics</topic><topic>Glycophorin - metabolism</topic><topic>Hydrogen</topic><topic>Hydrogen Bonding</topic><topic>Leucine Zippers</topic><topic>Life Sciences</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Membrane Biology</topic><topic>Membrane Proteins - chemistry</topic><topic>Membrane Proteins - metabolism</topic><topic>Micelles</topic><topic>Micrococcal Nuclease - chemistry</topic><topic>Molecular Sequence Data</topic><topic>Peptides - chemistry</topic><topic>Protein Conformation</topic><topic>Protein Kinases - chemistry</topic><topic>Protein Structure</topic><topic>Protein Structure, Secondary</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Saccharomyces cerevisiae Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao Zhou, Fang</creatorcontrib><creatorcontrib>Cocco, Melanie J.</creatorcontrib><creatorcontrib>Russ, William P.</creatorcontrib><creatorcontrib>Brunger, Axel T.</creatorcontrib><creatorcontrib>Engelman, Donald M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature Structural Biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao Zhou, Fang</au><au>Cocco, Melanie J.</au><au>Russ, William P.</au><au>Brunger, Axel T.</au><au>Engelman, Donald M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interhelical hydrogen bonding drives strong interactions in membrane proteins</atitle><jtitle>Nature Structural Biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Biol</addtitle><date>2000-02-01</date><risdate>2000</risdate><volume>7</volume><issue>2</issue><spage>154</spage><epage>160</epage><pages>154-160</pages><issn>1072-8368</issn><issn>1545-9993</issn><eissn>1545-9985</eissn><abstract>Polar residues in transmembrane α-helices may strongly influence the folding or association of integral membrane proteins. To test whether a motif that promotes helix association in a soluble protein could do the same within a membrane, we designed a model transmembrane helix based on the GCN4 leucine zipper. We found in both detergent miscelles and biological membranes that helix association is driven strongly by asparagine, independent of the rest of the hydrophobic leucine and/or valine sequence. Hydrogen bonding between membrane helices gives stronger associations than the packing of surfaces in glycophorin A helices, creating an opportunity to stabilize structures, but also implying a danger that non-specific interactions might occur. Thus, membrane proteins may fold to avoid exposure of strongly hydrogen bonding groups at their lipid exposed surfaces.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>10655619</pmid><doi>10.1038/72430</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1072-8368
ispartof Nature Structural Biology, 2000-02, Vol.7 (2), p.154-160
issn 1072-8368
1545-9993
1545-9985
language eng
recordid cdi_proquest_miscellaneous_70889507
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects Amino Acid Motifs
Amino Acid Sequence
Asparagine - chemistry
Biochemistry
Biological membranes
Biological Microscopy
Biomedical and Life Sciences
Cell Membrane - metabolism
Chloramphenicol O-Acetyltransferase - chemistry
Chloramphenicol O-Acetyltransferase - genetics
Chloramphenicol O-Acetyltransferase - metabolism
Circular Dichroism
Detergents - chemistry
Dimerization
DNA-Binding Proteins
Electrophoresis, Polyacrylamide Gel
Fungal Proteins - chemistry
Glycophorin - chemistry
Glycophorin - genetics
Glycophorin - metabolism
Hydrogen
Hydrogen Bonding
Leucine Zippers
Life Sciences
Magnetic Resonance Spectroscopy
Membrane Biology
Membrane Proteins - chemistry
Membrane Proteins - metabolism
Micelles
Micrococcal Nuclease - chemistry
Molecular Sequence Data
Peptides - chemistry
Protein Conformation
Protein Kinases - chemistry
Protein Structure
Protein Structure, Secondary
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Saccharomyces cerevisiae Proteins
title Interhelical hydrogen bonding drives strong interactions in membrane proteins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A36%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interhelical%20hydrogen%20bonding%20drives%20strong%20interactions%20in%20membrane%20proteins&rft.jtitle=Nature%20Structural%20Biology&rft.au=Xiao%20Zhou,%20Fang&rft.date=2000-02-01&rft.volume=7&rft.issue=2&rft.spage=154&rft.epage=160&rft.pages=154-160&rft.issn=1072-8368&rft.eissn=1545-9985&rft_id=info:doi/10.1038/72430&rft_dat=%3Cproquest_pubme%3E70889507%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=228289413&rft_id=info:pmid/10655619&rfr_iscdi=true