Atomic Force Microscopy of Nonhydroxy Galactocerebroside Nanotubes and Their Self-Assembly at the Air–Water Interface, with Applications to Myelin
Myelin is one of the few biological membranes to contain the lipid galactocerebrosides, although their role in myelin is unclear. To explore its structural role, we used fluorescence and atomic force microscopy (AFM) to study nonhydroxy galactocerebrosides (NCer) at the air–water interface of a Lang...
Gespeichert in:
Veröffentlicht in: | Journal of structural biology 2001-01, Vol.133 (1), p.1-9 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Journal of structural biology |
container_volume | 133 |
creator | Ohler, Benjamin Revenko, Irène Husted, Cynthia |
description | Myelin is one of the few biological membranes to contain the lipid galactocerebrosides, although their role in myelin is unclear. To explore its structural role, we used fluorescence and atomic force microscopy (AFM) to study nonhydroxy galactocerebrosides (NCer) at the air–water interface of a Langmuir–Blodgett trough. Fluorescence microscopy at the air–water interface indicated that NCer forms micrometer scale domains of varying radii with six fractal-like extensions. Atomic force microscopy using TappingMode in water on samples transferred to mica confirmed the fractal-like domain structure in the absence of dye and showed that the domains consisted of many aggregated nanotubes with a diameter of 30 nm. The Hausdorf fractal dimension was estimated to be 1.26 and 1.11 for two domains imaged with AFM. This evidence indicates that NCer forms a bulk phase of nanotubes at the air–water interface, unlike the liquid-condensed phase of a phospholipid monolayer. That NCer forms bilayer nanotubes that aggregate strongly suggests NCer helps maintain the stability of myelin by contributing to the curvature and adhesion of the membrane. We found that NCer appears to be decreased in myelin from multiple sclerosis normal appearing white matter, which could be an important event in the loss of myelin stability. |
doi_str_mv | 10.1006/jsbi.2000.4325 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70874019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1047847700943259</els_id><sourcerecordid>70874019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-574b2f7783dfa0c42511fb4ba3ed0d875e048df7da88430caa1a6fae30119623</originalsourceid><addsrcrecordid>eNp1kcFu1DAQhi0EoqVw5Yh84kQWO3Fi7zGqaKnUlgMrcbQm9ljrKomD7QVy4x3aJ-RJSLQrceIyM4dvfmnmI-QtZxvOWPPxIXV-UzLGNqIq62fknLNtXaimls_XWchCCSnPyKuUHhZK8JK_JGecV3XD6u05eWpzGLyhVyEapHfexJBMmGYaHL0P4362Mfya6TX0YHIwGLFbCG-R3sMY8qHDRGG0dLdHH-lX7F3RpoRD188UMs17pK2Pf34_foOMkd6MS3Vg8AP96fOettPUewPZhzHRHOjdjL0fX5MXDvqEb079guyuPu0uPxe3X65vLtvbwlSC5aKWoiudlKqyDpgRZc2560QHFVpmlayRCWWdtKCUqJgB4NA4wIpxvm3K6oK8P8ZOMXw_YMp68Mlg38OI4ZC0ZEoKxrcLuDmC63dSRKen6AeIs-ZMrxr0qkGvGvSqYVl4d0o-dAPaf_jp7wugjgAu5_3wGHUyHkeD1kc0Wdvg_5f9F2x0mkc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70874019</pqid></control><display><type>article</type><title>Atomic Force Microscopy of Nonhydroxy Galactocerebroside Nanotubes and Their Self-Assembly at the Air–Water Interface, with Applications to Myelin</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Ohler, Benjamin ; Revenko, Irène ; Husted, Cynthia</creator><creatorcontrib>Ohler, Benjamin ; Revenko, Irène ; Husted, Cynthia</creatorcontrib><description>Myelin is one of the few biological membranes to contain the lipid galactocerebrosides, although their role in myelin is unclear. To explore its structural role, we used fluorescence and atomic force microscopy (AFM) to study nonhydroxy galactocerebrosides (NCer) at the air–water interface of a Langmuir–Blodgett trough. Fluorescence microscopy at the air–water interface indicated that NCer forms micrometer scale domains of varying radii with six fractal-like extensions. Atomic force microscopy using TappingMode in water on samples transferred to mica confirmed the fractal-like domain structure in the absence of dye and showed that the domains consisted of many aggregated nanotubes with a diameter of 30 nm. The Hausdorf fractal dimension was estimated to be 1.26 and 1.11 for two domains imaged with AFM. This evidence indicates that NCer forms a bulk phase of nanotubes at the air–water interface, unlike the liquid-condensed phase of a phospholipid monolayer. That NCer forms bilayer nanotubes that aggregate strongly suggests NCer helps maintain the stability of myelin by contributing to the curvature and adhesion of the membrane. We found that NCer appears to be decreased in myelin from multiple sclerosis normal appearing white matter, which could be an important event in the loss of myelin stability.</description><identifier>ISSN: 1047-8477</identifier><identifier>EISSN: 1095-8657</identifier><identifier>DOI: 10.1006/jsbi.2000.4325</identifier><identifier>PMID: 11356059</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Air ; Aluminum Silicates ; atomic force microscopy ; Chromatography, High Pressure Liquid ; Fractals ; galactocerebroside ; Galactosylceramides - chemistry ; Galactosylceramides - metabolism ; Humans ; Langmuir–Blodgett ; Microscopy, Atomic Force ; Microscopy, Fluorescence ; multiple sclerosis ; myelin ; Myelin Sheath - chemistry ; Myelin Sheath - metabolism ; nanotube ; Protein Structure, Quaternary ; Water - metabolism</subject><ispartof>Journal of structural biology, 2001-01, Vol.133 (1), p.1-9</ispartof><rights>2001 Academic Press</rights><rights>Copyright 2001 Academic Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-574b2f7783dfa0c42511fb4ba3ed0d875e048df7da88430caa1a6fae30119623</citedby><cites>FETCH-LOGICAL-c340t-574b2f7783dfa0c42511fb4ba3ed0d875e048df7da88430caa1a6fae30119623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1047847700943259$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11356059$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ohler, Benjamin</creatorcontrib><creatorcontrib>Revenko, Irène</creatorcontrib><creatorcontrib>Husted, Cynthia</creatorcontrib><title>Atomic Force Microscopy of Nonhydroxy Galactocerebroside Nanotubes and Their Self-Assembly at the Air–Water Interface, with Applications to Myelin</title><title>Journal of structural biology</title><addtitle>J Struct Biol</addtitle><description>Myelin is one of the few biological membranes to contain the lipid galactocerebrosides, although their role in myelin is unclear. To explore its structural role, we used fluorescence and atomic force microscopy (AFM) to study nonhydroxy galactocerebrosides (NCer) at the air–water interface of a Langmuir–Blodgett trough. Fluorescence microscopy at the air–water interface indicated that NCer forms micrometer scale domains of varying radii with six fractal-like extensions. Atomic force microscopy using TappingMode in water on samples transferred to mica confirmed the fractal-like domain structure in the absence of dye and showed that the domains consisted of many aggregated nanotubes with a diameter of 30 nm. The Hausdorf fractal dimension was estimated to be 1.26 and 1.11 for two domains imaged with AFM. This evidence indicates that NCer forms a bulk phase of nanotubes at the air–water interface, unlike the liquid-condensed phase of a phospholipid monolayer. That NCer forms bilayer nanotubes that aggregate strongly suggests NCer helps maintain the stability of myelin by contributing to the curvature and adhesion of the membrane. We found that NCer appears to be decreased in myelin from multiple sclerosis normal appearing white matter, which could be an important event in the loss of myelin stability.</description><subject>Air</subject><subject>Aluminum Silicates</subject><subject>atomic force microscopy</subject><subject>Chromatography, High Pressure Liquid</subject><subject>Fractals</subject><subject>galactocerebroside</subject><subject>Galactosylceramides - chemistry</subject><subject>Galactosylceramides - metabolism</subject><subject>Humans</subject><subject>Langmuir–Blodgett</subject><subject>Microscopy, Atomic Force</subject><subject>Microscopy, Fluorescence</subject><subject>multiple sclerosis</subject><subject>myelin</subject><subject>Myelin Sheath - chemistry</subject><subject>Myelin Sheath - metabolism</subject><subject>nanotube</subject><subject>Protein Structure, Quaternary</subject><subject>Water - metabolism</subject><issn>1047-8477</issn><issn>1095-8657</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kcFu1DAQhi0EoqVw5Yh84kQWO3Fi7zGqaKnUlgMrcbQm9ljrKomD7QVy4x3aJ-RJSLQrceIyM4dvfmnmI-QtZxvOWPPxIXV-UzLGNqIq62fknLNtXaimls_XWchCCSnPyKuUHhZK8JK_JGecV3XD6u05eWpzGLyhVyEapHfexJBMmGYaHL0P4362Mfya6TX0YHIwGLFbCG-R3sMY8qHDRGG0dLdHH-lX7F3RpoRD188UMs17pK2Pf34_foOMkd6MS3Vg8AP96fOettPUewPZhzHRHOjdjL0fX5MXDvqEb079guyuPu0uPxe3X65vLtvbwlSC5aKWoiudlKqyDpgRZc2560QHFVpmlayRCWWdtKCUqJgB4NA4wIpxvm3K6oK8P8ZOMXw_YMp68Mlg38OI4ZC0ZEoKxrcLuDmC63dSRKen6AeIs-ZMrxr0qkGvGvSqYVl4d0o-dAPaf_jp7wugjgAu5_3wGHUyHkeD1kc0Wdvg_5f9F2x0mkc</recordid><startdate>200101</startdate><enddate>200101</enddate><creator>Ohler, Benjamin</creator><creator>Revenko, Irène</creator><creator>Husted, Cynthia</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200101</creationdate><title>Atomic Force Microscopy of Nonhydroxy Galactocerebroside Nanotubes and Their Self-Assembly at the Air–Water Interface, with Applications to Myelin</title><author>Ohler, Benjamin ; Revenko, Irène ; Husted, Cynthia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-574b2f7783dfa0c42511fb4ba3ed0d875e048df7da88430caa1a6fae30119623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Air</topic><topic>Aluminum Silicates</topic><topic>atomic force microscopy</topic><topic>Chromatography, High Pressure Liquid</topic><topic>Fractals</topic><topic>galactocerebroside</topic><topic>Galactosylceramides - chemistry</topic><topic>Galactosylceramides - metabolism</topic><topic>Humans</topic><topic>Langmuir–Blodgett</topic><topic>Microscopy, Atomic Force</topic><topic>Microscopy, Fluorescence</topic><topic>multiple sclerosis</topic><topic>myelin</topic><topic>Myelin Sheath - chemistry</topic><topic>Myelin Sheath - metabolism</topic><topic>nanotube</topic><topic>Protein Structure, Quaternary</topic><topic>Water - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ohler, Benjamin</creatorcontrib><creatorcontrib>Revenko, Irène</creatorcontrib><creatorcontrib>Husted, Cynthia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of structural biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ohler, Benjamin</au><au>Revenko, Irène</au><au>Husted, Cynthia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic Force Microscopy of Nonhydroxy Galactocerebroside Nanotubes and Their Self-Assembly at the Air–Water Interface, with Applications to Myelin</atitle><jtitle>Journal of structural biology</jtitle><addtitle>J Struct Biol</addtitle><date>2001-01</date><risdate>2001</risdate><volume>133</volume><issue>1</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1047-8477</issn><eissn>1095-8657</eissn><abstract>Myelin is one of the few biological membranes to contain the lipid galactocerebrosides, although their role in myelin is unclear. To explore its structural role, we used fluorescence and atomic force microscopy (AFM) to study nonhydroxy galactocerebrosides (NCer) at the air–water interface of a Langmuir–Blodgett trough. Fluorescence microscopy at the air–water interface indicated that NCer forms micrometer scale domains of varying radii with six fractal-like extensions. Atomic force microscopy using TappingMode in water on samples transferred to mica confirmed the fractal-like domain structure in the absence of dye and showed that the domains consisted of many aggregated nanotubes with a diameter of 30 nm. The Hausdorf fractal dimension was estimated to be 1.26 and 1.11 for two domains imaged with AFM. This evidence indicates that NCer forms a bulk phase of nanotubes at the air–water interface, unlike the liquid-condensed phase of a phospholipid monolayer. That NCer forms bilayer nanotubes that aggregate strongly suggests NCer helps maintain the stability of myelin by contributing to the curvature and adhesion of the membrane. We found that NCer appears to be decreased in myelin from multiple sclerosis normal appearing white matter, which could be an important event in the loss of myelin stability.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>11356059</pmid><doi>10.1006/jsbi.2000.4325</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1047-8477 |
ispartof | Journal of structural biology, 2001-01, Vol.133 (1), p.1-9 |
issn | 1047-8477 1095-8657 |
language | eng |
recordid | cdi_proquest_miscellaneous_70874019 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Air Aluminum Silicates atomic force microscopy Chromatography, High Pressure Liquid Fractals galactocerebroside Galactosylceramides - chemistry Galactosylceramides - metabolism Humans Langmuir–Blodgett Microscopy, Atomic Force Microscopy, Fluorescence multiple sclerosis myelin Myelin Sheath - chemistry Myelin Sheath - metabolism nanotube Protein Structure, Quaternary Water - metabolism |
title | Atomic Force Microscopy of Nonhydroxy Galactocerebroside Nanotubes and Their Self-Assembly at the Air–Water Interface, with Applications to Myelin |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A55%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic%20Force%20Microscopy%20of%20Nonhydroxy%20Galactocerebroside%20Nanotubes%20and%20Their%20Self-Assembly%20at%20the%20Air%E2%80%93Water%20Interface,%20with%20Applications%20to%20Myelin&rft.jtitle=Journal%20of%20structural%20biology&rft.au=Ohler,%20Benjamin&rft.date=2001-01&rft.volume=133&rft.issue=1&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1047-8477&rft.eissn=1095-8657&rft_id=info:doi/10.1006/jsbi.2000.4325&rft_dat=%3Cproquest_cross%3E70874019%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70874019&rft_id=info:pmid/11356059&rft_els_id=S1047847700943259&rfr_iscdi=true |