Oxotremorine-induced cerebral hyperemia does not predict infarction volume in spontaneously hypertensive or stroke-prone rats
We tested the following hypotheses: a) spontaneously hypertensive stroke-prone rats (SHR-SP) have more brain injury than spontaneously hypertensive rats (SHR) and normotensive controls (Wistar-Kyoto rats [WKY]) when exposed to transient focal ischemia; b) infarction size is not correlated with basel...
Gespeichert in:
Veröffentlicht in: | Critical care medicine 2000, Vol.28 (1), p.190-195 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We tested the following hypotheses: a) spontaneously hypertensive stroke-prone rats (SHR-SP) have more brain injury than spontaneously hypertensive rats (SHR) and normotensive controls (Wistar-Kyoto rats [WKY]) when exposed to transient focal ischemia; b) infarction size is not correlated with baseline blood pressure; and c) infarction size is inversely related to the cerebral hyperemic response to oxotremorine, a muscarinic agonist that increases cerebral blood flow (CBF) by stimulating endothelial nitric oxide synthase.
In vivo study.
Animal laboratory in a university teaching hospital.
Adult age-matched male WKY, SHR, and SHR-SP.
Rats were instrumented under halothane anesthesia. Transient focal cerebral ischemia was produced for 2 hrs with the intravascular suture technique. Cerebral perfusion, estimated with laser Doppler flowmetry (LD-CBF), in response to intravenous oxotremorine, was measured in one cohort of rats to estimate endothelial nitric oxide synthase function. Infarction volume was measured at 22 hrs of reperfusion with 2,3,5-triphenyltetrazolium chloride staining.
Infarction volume in the striatum of SHR-SP (42+/-4 mm3) was greater than in SHR (29+/-6 mm3) or WKY (1+/-1 mm3) (n = 9 rats/strain). Resting (unanesthetized) mean arterial blood pressure was similar in SHR-SP (177+/-5 mm Hg) and SHR (170+/-5 mm Hg) despite a greater infarction volume in SHR-SP (n = 4) compared with SHR (n = 5). The percentage increase in LD-CBF signal in response to oxotremorine was similar for both groups (SHR, 64%+/-22% [n = 10]; SHR-SP, 69%+/-22% [n = 8]). However, in this cohort, cortical infarction volume was less in SHR (30%+/-4% of ipsilateral cortex) than in SHR-SP (49%+/-2% of ipsilateral cortex).
Although SHR-SP have greater infarction volume than SHR, the mechanism of injury does not appear to be related to a difference in unanesthetized baseline mean arterial blood pressure or to an alteration in endothelium-produced nitric oxide. |
---|---|
ISSN: | 0090-3493 1530-0293 |
DOI: | 10.1097/00003246-200001000-00031 |