Intracranial EEG versus flumazenil and glucose PET in children with extratemporal lobe epilepsy
To compare abnormalities determined in 2-deoxy-2-[18F]fluoro-D-glucose (FDG) and [11C]flumazenil (FMZ) PET images with intracranial EEG data in patients with extratemporal lobe epilepsy. Although PET studies with FDG and FMZ are being used clinically to localize epileptogenic regions in patients wit...
Gespeichert in:
Veröffentlicht in: | Neurology 2000-01, Vol.54 (1), p.171-179 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 179 |
---|---|
container_issue | 1 |
container_start_page | 171 |
container_title | Neurology |
container_volume | 54 |
creator | MUZIK, O DA SILVA, E. A FROST, M RITTER, F WATSON, C CHUGANI, H. T JUHASZ, C CHUGANI, D. C SHAH, J NAGY, F CANADY, A VON STOCKHAUSEN, H.-M HERHOLZ, K GATES, J |
description | To compare abnormalities determined in 2-deoxy-2-[18F]fluoro-D-glucose (FDG) and [11C]flumazenil (FMZ) PET images with intracranial EEG data in patients with extratemporal lobe epilepsy.
Although PET studies with FDG and FMZ are being used clinically to localize epileptogenic regions in patients with refractory epilepsy, the electrophysiologic significance of the identified PET abnormalities remains poorly understood.
We studied 10 patients, mostly children (4 boys, 6 girls, aged 2 to 19 years; mean age, 11 years), who underwent FDG and FMZ PET scans, intracranial EEG monitoring, and cortical resection for intractable epilepsy. EEG electrode positions relative to the brain surface were determined from MRI image volumes. Cortical areas of abnormal glucose metabolism or FMZ binding were determined objectively based on asymmetry measures derived from homotopic cortical areas at three asymmetry thresholds. PET data were then coregistered with the MRI and overlaid on the MRI surface. A receiver operating characteristics (ROC) analysis was performed to determine the specificity and sensitivity of PET-defined abnormalities against the gold standard of intracranial EEG data.
FMZ PET detected at least part of the seizure onset zone in all subjects, whereas FDG PET failed to detect the seizure onset region in two of 10 patients. The area under the ROC curves was higher for FMZ than FDG PET for both seizure onset (p = 0.01) and frequent interictal spiking (p = 0.04). Both FMZ and FDG PET showed poor performance for detection of rapid seizure spread (area under the ROC curve not significantly different from 0.5).
[11C]flumazenil (FMZ) PET is significantly more sensitive than 2-deoxy-2-[18F]fluoro-D-glucose (FDG) PET for the detection of cortical regions of seizure onset and frequent spiking in patients with extratemporal lobe epilepsy, whereas both FDG and FMZ PET show low sensitivity in the detection of cortical areas of rapid seizure spread. The application of PET, in particular FMZ PET, in guiding subdural electrode placement in refractory extratemporal lobe epilepsy will enhance coverage of the epileptogenic zone. |
doi_str_mv | 10.1212/WNL.54.1.171 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70872645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70872645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-c375ceaa64cdd9cb4c9e2ea4f81cb6e3896575bc29979c36d72b0466b65261823</originalsourceid><addsrcrecordid>eNpNkEtP3DAQgC1UBMvSG-fKh4pTd_ErdnysUICVVsAB1N4sx5mAK-dRO-HRX19Xu1K5zBzm0yfNh9AZJWvKKLv4cbtdF2JN11TRA7SgBZMrydnPT2hBCCtXvFTlMTpJ6Rch-aj0ETqmRHJJhVggs-mnaF20vbcBV9U1foGY5oTbMHf2D_Q-YNs3-CnMbkiA76sH7Hvsnn1oIvT41U_PGN6yY4JuHGKWhKEGDKMPMKb3U3TY2pDg834v0eNV9XB5s9reXW8uv29Xjhd6ylMVDqyVwjWNdrVwGhhY0ZbU1RJ4qWWhitoxrZV2XDaK1URIWcv8Li0ZX6LznXeMw-8Z0mQ6nxyEYHsY5mQUKRWTosjgtx3o4pBShNaM0Xc2vhtKzL-gJgc1hTDU5KAZ_7L3znUHzQd4VzADX_eATc6GNpd0Pv3nGBel1PwvMYp-RQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70872645</pqid></control><display><type>article</type><title>Intracranial EEG versus flumazenil and glucose PET in children with extratemporal lobe epilepsy</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>Journals@Ovid Complete</source><creator>MUZIK, O ; DA SILVA, E. A ; FROST, M ; RITTER, F ; WATSON, C ; CHUGANI, H. T ; JUHASZ, C ; CHUGANI, D. C ; SHAH, J ; NAGY, F ; CANADY, A ; VON STOCKHAUSEN, H.-M ; HERHOLZ, K ; GATES, J</creator><creatorcontrib>MUZIK, O ; DA SILVA, E. A ; FROST, M ; RITTER, F ; WATSON, C ; CHUGANI, H. T ; JUHASZ, C ; CHUGANI, D. C ; SHAH, J ; NAGY, F ; CANADY, A ; VON STOCKHAUSEN, H.-M ; HERHOLZ, K ; GATES, J</creatorcontrib><description>To compare abnormalities determined in 2-deoxy-2-[18F]fluoro-D-glucose (FDG) and [11C]flumazenil (FMZ) PET images with intracranial EEG data in patients with extratemporal lobe epilepsy.
Although PET studies with FDG and FMZ are being used clinically to localize epileptogenic regions in patients with refractory epilepsy, the electrophysiologic significance of the identified PET abnormalities remains poorly understood.
We studied 10 patients, mostly children (4 boys, 6 girls, aged 2 to 19 years; mean age, 11 years), who underwent FDG and FMZ PET scans, intracranial EEG monitoring, and cortical resection for intractable epilepsy. EEG electrode positions relative to the brain surface were determined from MRI image volumes. Cortical areas of abnormal glucose metabolism or FMZ binding were determined objectively based on asymmetry measures derived from homotopic cortical areas at three asymmetry thresholds. PET data were then coregistered with the MRI and overlaid on the MRI surface. A receiver operating characteristics (ROC) analysis was performed to determine the specificity and sensitivity of PET-defined abnormalities against the gold standard of intracranial EEG data.
FMZ PET detected at least part of the seizure onset zone in all subjects, whereas FDG PET failed to detect the seizure onset region in two of 10 patients. The area under the ROC curves was higher for FMZ than FDG PET for both seizure onset (p = 0.01) and frequent interictal spiking (p = 0.04). Both FMZ and FDG PET showed poor performance for detection of rapid seizure spread (area under the ROC curve not significantly different from 0.5).
[11C]flumazenil (FMZ) PET is significantly more sensitive than 2-deoxy-2-[18F]fluoro-D-glucose (FDG) PET for the detection of cortical regions of seizure onset and frequent spiking in patients with extratemporal lobe epilepsy, whereas both FDG and FMZ PET show low sensitivity in the detection of cortical areas of rapid seizure spread. The application of PET, in particular FMZ PET, in guiding subdural electrode placement in refractory extratemporal lobe epilepsy will enhance coverage of the epileptogenic zone.</description><identifier>ISSN: 0028-3878</identifier><identifier>EISSN: 1526-632X</identifier><identifier>DOI: 10.1212/WNL.54.1.171</identifier><identifier>PMID: 10636144</identifier><identifier>CODEN: NEURAI</identifier><language>eng</language><publisher>Hagerstown, MD: Lippincott Williams & Wilkins</publisher><subject>Adolescent ; Biological and medical sciences ; Blood Glucose - metabolism ; Brain - metabolism ; Brain - physiopathology ; Child ; Child, Preschool ; Electroencephalography ; Epilepsy - diagnosis ; Female ; Flumazenil ; Fluorodeoxyglucose F18 ; Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy ; Humans ; Investigative techniques, diagnostic techniques (general aspects) ; Male ; Medical sciences ; Nervous system (semeiology, syndromes) ; Neurology ; Osteoarticular system. Muscles ; Radiodiagnosis. Nmr imagery. Nmr spectrometry ; ROC Curve ; Sensitivity and Specificity ; Tomography, Emission-Computed</subject><ispartof>Neurology, 2000-01, Vol.54 (1), p.171-179</ispartof><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-c375ceaa64cdd9cb4c9e2ea4f81cb6e3896575bc29979c36d72b0466b65261823</citedby><cites>FETCH-LOGICAL-c359t-c375ceaa64cdd9cb4c9e2ea4f81cb6e3896575bc29979c36d72b0466b65261823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1234869$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10636144$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>MUZIK, O</creatorcontrib><creatorcontrib>DA SILVA, E. A</creatorcontrib><creatorcontrib>FROST, M</creatorcontrib><creatorcontrib>RITTER, F</creatorcontrib><creatorcontrib>WATSON, C</creatorcontrib><creatorcontrib>CHUGANI, H. T</creatorcontrib><creatorcontrib>JUHASZ, C</creatorcontrib><creatorcontrib>CHUGANI, D. C</creatorcontrib><creatorcontrib>SHAH, J</creatorcontrib><creatorcontrib>NAGY, F</creatorcontrib><creatorcontrib>CANADY, A</creatorcontrib><creatorcontrib>VON STOCKHAUSEN, H.-M</creatorcontrib><creatorcontrib>HERHOLZ, K</creatorcontrib><creatorcontrib>GATES, J</creatorcontrib><title>Intracranial EEG versus flumazenil and glucose PET in children with extratemporal lobe epilepsy</title><title>Neurology</title><addtitle>Neurology</addtitle><description>To compare abnormalities determined in 2-deoxy-2-[18F]fluoro-D-glucose (FDG) and [11C]flumazenil (FMZ) PET images with intracranial EEG data in patients with extratemporal lobe epilepsy.
Although PET studies with FDG and FMZ are being used clinically to localize epileptogenic regions in patients with refractory epilepsy, the electrophysiologic significance of the identified PET abnormalities remains poorly understood.
We studied 10 patients, mostly children (4 boys, 6 girls, aged 2 to 19 years; mean age, 11 years), who underwent FDG and FMZ PET scans, intracranial EEG monitoring, and cortical resection for intractable epilepsy. EEG electrode positions relative to the brain surface were determined from MRI image volumes. Cortical areas of abnormal glucose metabolism or FMZ binding were determined objectively based on asymmetry measures derived from homotopic cortical areas at three asymmetry thresholds. PET data were then coregistered with the MRI and overlaid on the MRI surface. A receiver operating characteristics (ROC) analysis was performed to determine the specificity and sensitivity of PET-defined abnormalities against the gold standard of intracranial EEG data.
FMZ PET detected at least part of the seizure onset zone in all subjects, whereas FDG PET failed to detect the seizure onset region in two of 10 patients. The area under the ROC curves was higher for FMZ than FDG PET for both seizure onset (p = 0.01) and frequent interictal spiking (p = 0.04). Both FMZ and FDG PET showed poor performance for detection of rapid seizure spread (area under the ROC curve not significantly different from 0.5).
[11C]flumazenil (FMZ) PET is significantly more sensitive than 2-deoxy-2-[18F]fluoro-D-glucose (FDG) PET for the detection of cortical regions of seizure onset and frequent spiking in patients with extratemporal lobe epilepsy, whereas both FDG and FMZ PET show low sensitivity in the detection of cortical areas of rapid seizure spread. The application of PET, in particular FMZ PET, in guiding subdural electrode placement in refractory extratemporal lobe epilepsy will enhance coverage of the epileptogenic zone.</description><subject>Adolescent</subject><subject>Biological and medical sciences</subject><subject>Blood Glucose - metabolism</subject><subject>Brain - metabolism</subject><subject>Brain - physiopathology</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Electroencephalography</subject><subject>Epilepsy - diagnosis</subject><subject>Female</subject><subject>Flumazenil</subject><subject>Fluorodeoxyglucose F18</subject><subject>Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy</subject><subject>Humans</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Nervous system (semeiology, syndromes)</subject><subject>Neurology</subject><subject>Osteoarticular system. Muscles</subject><subject>Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><subject>ROC Curve</subject><subject>Sensitivity and Specificity</subject><subject>Tomography, Emission-Computed</subject><issn>0028-3878</issn><issn>1526-632X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkEtP3DAQgC1UBMvSG-fKh4pTd_ErdnysUICVVsAB1N4sx5mAK-dRO-HRX19Xu1K5zBzm0yfNh9AZJWvKKLv4cbtdF2JN11TRA7SgBZMrydnPT2hBCCtXvFTlMTpJ6Rch-aj0ETqmRHJJhVggs-mnaF20vbcBV9U1foGY5oTbMHf2D_Q-YNs3-CnMbkiA76sH7Hvsnn1oIvT41U_PGN6yY4JuHGKWhKEGDKMPMKb3U3TY2pDg834v0eNV9XB5s9reXW8uv29Xjhd6ylMVDqyVwjWNdrVwGhhY0ZbU1RJ4qWWhitoxrZV2XDaK1URIWcv8Li0ZX6LznXeMw-8Z0mQ6nxyEYHsY5mQUKRWTosjgtx3o4pBShNaM0Xc2vhtKzL-gJgc1hTDU5KAZ_7L3znUHzQd4VzADX_eATc6GNpd0Pv3nGBel1PwvMYp-RQ</recordid><startdate>20000111</startdate><enddate>20000111</enddate><creator>MUZIK, O</creator><creator>DA SILVA, E. A</creator><creator>FROST, M</creator><creator>RITTER, F</creator><creator>WATSON, C</creator><creator>CHUGANI, H. T</creator><creator>JUHASZ, C</creator><creator>CHUGANI, D. C</creator><creator>SHAH, J</creator><creator>NAGY, F</creator><creator>CANADY, A</creator><creator>VON STOCKHAUSEN, H.-M</creator><creator>HERHOLZ, K</creator><creator>GATES, J</creator><general>Lippincott Williams & Wilkins</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20000111</creationdate><title>Intracranial EEG versus flumazenil and glucose PET in children with extratemporal lobe epilepsy</title><author>MUZIK, O ; DA SILVA, E. A ; FROST, M ; RITTER, F ; WATSON, C ; CHUGANI, H. T ; JUHASZ, C ; CHUGANI, D. C ; SHAH, J ; NAGY, F ; CANADY, A ; VON STOCKHAUSEN, H.-M ; HERHOLZ, K ; GATES, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-c375ceaa64cdd9cb4c9e2ea4f81cb6e3896575bc29979c36d72b0466b65261823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Adolescent</topic><topic>Biological and medical sciences</topic><topic>Blood Glucose - metabolism</topic><topic>Brain - metabolism</topic><topic>Brain - physiopathology</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Electroencephalography</topic><topic>Epilepsy - diagnosis</topic><topic>Female</topic><topic>Flumazenil</topic><topic>Fluorodeoxyglucose F18</topic><topic>Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy</topic><topic>Humans</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Nervous system (semeiology, syndromes)</topic><topic>Neurology</topic><topic>Osteoarticular system. Muscles</topic><topic>Radiodiagnosis. Nmr imagery. Nmr spectrometry</topic><topic>ROC Curve</topic><topic>Sensitivity and Specificity</topic><topic>Tomography, Emission-Computed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MUZIK, O</creatorcontrib><creatorcontrib>DA SILVA, E. A</creatorcontrib><creatorcontrib>FROST, M</creatorcontrib><creatorcontrib>RITTER, F</creatorcontrib><creatorcontrib>WATSON, C</creatorcontrib><creatorcontrib>CHUGANI, H. T</creatorcontrib><creatorcontrib>JUHASZ, C</creatorcontrib><creatorcontrib>CHUGANI, D. C</creatorcontrib><creatorcontrib>SHAH, J</creatorcontrib><creatorcontrib>NAGY, F</creatorcontrib><creatorcontrib>CANADY, A</creatorcontrib><creatorcontrib>VON STOCKHAUSEN, H.-M</creatorcontrib><creatorcontrib>HERHOLZ, K</creatorcontrib><creatorcontrib>GATES, J</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neurology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MUZIK, O</au><au>DA SILVA, E. A</au><au>FROST, M</au><au>RITTER, F</au><au>WATSON, C</au><au>CHUGANI, H. T</au><au>JUHASZ, C</au><au>CHUGANI, D. C</au><au>SHAH, J</au><au>NAGY, F</au><au>CANADY, A</au><au>VON STOCKHAUSEN, H.-M</au><au>HERHOLZ, K</au><au>GATES, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intracranial EEG versus flumazenil and glucose PET in children with extratemporal lobe epilepsy</atitle><jtitle>Neurology</jtitle><addtitle>Neurology</addtitle><date>2000-01-11</date><risdate>2000</risdate><volume>54</volume><issue>1</issue><spage>171</spage><epage>179</epage><pages>171-179</pages><issn>0028-3878</issn><eissn>1526-632X</eissn><coden>NEURAI</coden><abstract>To compare abnormalities determined in 2-deoxy-2-[18F]fluoro-D-glucose (FDG) and [11C]flumazenil (FMZ) PET images with intracranial EEG data in patients with extratemporal lobe epilepsy.
Although PET studies with FDG and FMZ are being used clinically to localize epileptogenic regions in patients with refractory epilepsy, the electrophysiologic significance of the identified PET abnormalities remains poorly understood.
We studied 10 patients, mostly children (4 boys, 6 girls, aged 2 to 19 years; mean age, 11 years), who underwent FDG and FMZ PET scans, intracranial EEG monitoring, and cortical resection for intractable epilepsy. EEG electrode positions relative to the brain surface were determined from MRI image volumes. Cortical areas of abnormal glucose metabolism or FMZ binding were determined objectively based on asymmetry measures derived from homotopic cortical areas at three asymmetry thresholds. PET data were then coregistered with the MRI and overlaid on the MRI surface. A receiver operating characteristics (ROC) analysis was performed to determine the specificity and sensitivity of PET-defined abnormalities against the gold standard of intracranial EEG data.
FMZ PET detected at least part of the seizure onset zone in all subjects, whereas FDG PET failed to detect the seizure onset region in two of 10 patients. The area under the ROC curves was higher for FMZ than FDG PET for both seizure onset (p = 0.01) and frequent interictal spiking (p = 0.04). Both FMZ and FDG PET showed poor performance for detection of rapid seizure spread (area under the ROC curve not significantly different from 0.5).
[11C]flumazenil (FMZ) PET is significantly more sensitive than 2-deoxy-2-[18F]fluoro-D-glucose (FDG) PET for the detection of cortical regions of seizure onset and frequent spiking in patients with extratemporal lobe epilepsy, whereas both FDG and FMZ PET show low sensitivity in the detection of cortical areas of rapid seizure spread. The application of PET, in particular FMZ PET, in guiding subdural electrode placement in refractory extratemporal lobe epilepsy will enhance coverage of the epileptogenic zone.</abstract><cop>Hagerstown, MD</cop><pub>Lippincott Williams & Wilkins</pub><pmid>10636144</pmid><doi>10.1212/WNL.54.1.171</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-3878 |
ispartof | Neurology, 2000-01, Vol.54 (1), p.171-179 |
issn | 0028-3878 1526-632X |
language | eng |
recordid | cdi_proquest_miscellaneous_70872645 |
source | MEDLINE; Alma/SFX Local Collection; Journals@Ovid Complete |
subjects | Adolescent Biological and medical sciences Blood Glucose - metabolism Brain - metabolism Brain - physiopathology Child Child, Preschool Electroencephalography Epilepsy - diagnosis Female Flumazenil Fluorodeoxyglucose F18 Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy Humans Investigative techniques, diagnostic techniques (general aspects) Male Medical sciences Nervous system (semeiology, syndromes) Neurology Osteoarticular system. Muscles Radiodiagnosis. Nmr imagery. Nmr spectrometry ROC Curve Sensitivity and Specificity Tomography, Emission-Computed |
title | Intracranial EEG versus flumazenil and glucose PET in children with extratemporal lobe epilepsy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A19%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intracranial%20EEG%20versus%20flumazenil%20and%20glucose%20PET%20in%20children%20with%20extratemporal%20lobe%20epilepsy&rft.jtitle=Neurology&rft.au=MUZIK,%20O&rft.date=2000-01-11&rft.volume=54&rft.issue=1&rft.spage=171&rft.epage=179&rft.pages=171-179&rft.issn=0028-3878&rft.eissn=1526-632X&rft.coden=NEURAI&rft_id=info:doi/10.1212/WNL.54.1.171&rft_dat=%3Cproquest_cross%3E70872645%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70872645&rft_id=info:pmid/10636144&rfr_iscdi=true |