Intracranial EEG versus flumazenil and glucose PET in children with extratemporal lobe epilepsy

To compare abnormalities determined in 2-deoxy-2-[18F]fluoro-D-glucose (FDG) and [11C]flumazenil (FMZ) PET images with intracranial EEG data in patients with extratemporal lobe epilepsy. Although PET studies with FDG and FMZ are being used clinically to localize epileptogenic regions in patients wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurology 2000-01, Vol.54 (1), p.171-179
Hauptverfasser: MUZIK, O, DA SILVA, E. A, FROST, M, RITTER, F, WATSON, C, CHUGANI, H. T, JUHASZ, C, CHUGANI, D. C, SHAH, J, NAGY, F, CANADY, A, VON STOCKHAUSEN, H.-M, HERHOLZ, K, GATES, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 179
container_issue 1
container_start_page 171
container_title Neurology
container_volume 54
creator MUZIK, O
DA SILVA, E. A
FROST, M
RITTER, F
WATSON, C
CHUGANI, H. T
JUHASZ, C
CHUGANI, D. C
SHAH, J
NAGY, F
CANADY, A
VON STOCKHAUSEN, H.-M
HERHOLZ, K
GATES, J
description To compare abnormalities determined in 2-deoxy-2-[18F]fluoro-D-glucose (FDG) and [11C]flumazenil (FMZ) PET images with intracranial EEG data in patients with extratemporal lobe epilepsy. Although PET studies with FDG and FMZ are being used clinically to localize epileptogenic regions in patients with refractory epilepsy, the electrophysiologic significance of the identified PET abnormalities remains poorly understood. We studied 10 patients, mostly children (4 boys, 6 girls, aged 2 to 19 years; mean age, 11 years), who underwent FDG and FMZ PET scans, intracranial EEG monitoring, and cortical resection for intractable epilepsy. EEG electrode positions relative to the brain surface were determined from MRI image volumes. Cortical areas of abnormal glucose metabolism or FMZ binding were determined objectively based on asymmetry measures derived from homotopic cortical areas at three asymmetry thresholds. PET data were then coregistered with the MRI and overlaid on the MRI surface. A receiver operating characteristics (ROC) analysis was performed to determine the specificity and sensitivity of PET-defined abnormalities against the gold standard of intracranial EEG data. FMZ PET detected at least part of the seizure onset zone in all subjects, whereas FDG PET failed to detect the seizure onset region in two of 10 patients. The area under the ROC curves was higher for FMZ than FDG PET for both seizure onset (p = 0.01) and frequent interictal spiking (p = 0.04). Both FMZ and FDG PET showed poor performance for detection of rapid seizure spread (area under the ROC curve not significantly different from 0.5). [11C]flumazenil (FMZ) PET is significantly more sensitive than 2-deoxy-2-[18F]fluoro-D-glucose (FDG) PET for the detection of cortical regions of seizure onset and frequent spiking in patients with extratemporal lobe epilepsy, whereas both FDG and FMZ PET show low sensitivity in the detection of cortical areas of rapid seizure spread. The application of PET, in particular FMZ PET, in guiding subdural electrode placement in refractory extratemporal lobe epilepsy will enhance coverage of the epileptogenic zone.
doi_str_mv 10.1212/WNL.54.1.171
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70872645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70872645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-c375ceaa64cdd9cb4c9e2ea4f81cb6e3896575bc29979c36d72b0466b65261823</originalsourceid><addsrcrecordid>eNpNkEtP3DAQgC1UBMvSG-fKh4pTd_ErdnysUICVVsAB1N4sx5mAK-dRO-HRX19Xu1K5zBzm0yfNh9AZJWvKKLv4cbtdF2JN11TRA7SgBZMrydnPT2hBCCtXvFTlMTpJ6Rch-aj0ETqmRHJJhVggs-mnaF20vbcBV9U1foGY5oTbMHf2D_Q-YNs3-CnMbkiA76sH7Hvsnn1oIvT41U_PGN6yY4JuHGKWhKEGDKMPMKb3U3TY2pDg834v0eNV9XB5s9reXW8uv29Xjhd6ylMVDqyVwjWNdrVwGhhY0ZbU1RJ4qWWhitoxrZV2XDaK1URIWcv8Li0ZX6LznXeMw-8Z0mQ6nxyEYHsY5mQUKRWTosjgtx3o4pBShNaM0Xc2vhtKzL-gJgc1hTDU5KAZ_7L3znUHzQd4VzADX_eATc6GNpd0Pv3nGBel1PwvMYp-RQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70872645</pqid></control><display><type>article</type><title>Intracranial EEG versus flumazenil and glucose PET in children with extratemporal lobe epilepsy</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>Journals@Ovid Complete</source><creator>MUZIK, O ; DA SILVA, E. A ; FROST, M ; RITTER, F ; WATSON, C ; CHUGANI, H. T ; JUHASZ, C ; CHUGANI, D. C ; SHAH, J ; NAGY, F ; CANADY, A ; VON STOCKHAUSEN, H.-M ; HERHOLZ, K ; GATES, J</creator><creatorcontrib>MUZIK, O ; DA SILVA, E. A ; FROST, M ; RITTER, F ; WATSON, C ; CHUGANI, H. T ; JUHASZ, C ; CHUGANI, D. C ; SHAH, J ; NAGY, F ; CANADY, A ; VON STOCKHAUSEN, H.-M ; HERHOLZ, K ; GATES, J</creatorcontrib><description>To compare abnormalities determined in 2-deoxy-2-[18F]fluoro-D-glucose (FDG) and [11C]flumazenil (FMZ) PET images with intracranial EEG data in patients with extratemporal lobe epilepsy. Although PET studies with FDG and FMZ are being used clinically to localize epileptogenic regions in patients with refractory epilepsy, the electrophysiologic significance of the identified PET abnormalities remains poorly understood. We studied 10 patients, mostly children (4 boys, 6 girls, aged 2 to 19 years; mean age, 11 years), who underwent FDG and FMZ PET scans, intracranial EEG monitoring, and cortical resection for intractable epilepsy. EEG electrode positions relative to the brain surface were determined from MRI image volumes. Cortical areas of abnormal glucose metabolism or FMZ binding were determined objectively based on asymmetry measures derived from homotopic cortical areas at three asymmetry thresholds. PET data were then coregistered with the MRI and overlaid on the MRI surface. A receiver operating characteristics (ROC) analysis was performed to determine the specificity and sensitivity of PET-defined abnormalities against the gold standard of intracranial EEG data. FMZ PET detected at least part of the seizure onset zone in all subjects, whereas FDG PET failed to detect the seizure onset region in two of 10 patients. The area under the ROC curves was higher for FMZ than FDG PET for both seizure onset (p = 0.01) and frequent interictal spiking (p = 0.04). Both FMZ and FDG PET showed poor performance for detection of rapid seizure spread (area under the ROC curve not significantly different from 0.5). [11C]flumazenil (FMZ) PET is significantly more sensitive than 2-deoxy-2-[18F]fluoro-D-glucose (FDG) PET for the detection of cortical regions of seizure onset and frequent spiking in patients with extratemporal lobe epilepsy, whereas both FDG and FMZ PET show low sensitivity in the detection of cortical areas of rapid seizure spread. The application of PET, in particular FMZ PET, in guiding subdural electrode placement in refractory extratemporal lobe epilepsy will enhance coverage of the epileptogenic zone.</description><identifier>ISSN: 0028-3878</identifier><identifier>EISSN: 1526-632X</identifier><identifier>DOI: 10.1212/WNL.54.1.171</identifier><identifier>PMID: 10636144</identifier><identifier>CODEN: NEURAI</identifier><language>eng</language><publisher>Hagerstown, MD: Lippincott Williams &amp; Wilkins</publisher><subject>Adolescent ; Biological and medical sciences ; Blood Glucose - metabolism ; Brain - metabolism ; Brain - physiopathology ; Child ; Child, Preschool ; Electroencephalography ; Epilepsy - diagnosis ; Female ; Flumazenil ; Fluorodeoxyglucose F18 ; Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy ; Humans ; Investigative techniques, diagnostic techniques (general aspects) ; Male ; Medical sciences ; Nervous system (semeiology, syndromes) ; Neurology ; Osteoarticular system. Muscles ; Radiodiagnosis. Nmr imagery. Nmr spectrometry ; ROC Curve ; Sensitivity and Specificity ; Tomography, Emission-Computed</subject><ispartof>Neurology, 2000-01, Vol.54 (1), p.171-179</ispartof><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-c375ceaa64cdd9cb4c9e2ea4f81cb6e3896575bc29979c36d72b0466b65261823</citedby><cites>FETCH-LOGICAL-c359t-c375ceaa64cdd9cb4c9e2ea4f81cb6e3896575bc29979c36d72b0466b65261823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1234869$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10636144$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>MUZIK, O</creatorcontrib><creatorcontrib>DA SILVA, E. A</creatorcontrib><creatorcontrib>FROST, M</creatorcontrib><creatorcontrib>RITTER, F</creatorcontrib><creatorcontrib>WATSON, C</creatorcontrib><creatorcontrib>CHUGANI, H. T</creatorcontrib><creatorcontrib>JUHASZ, C</creatorcontrib><creatorcontrib>CHUGANI, D. C</creatorcontrib><creatorcontrib>SHAH, J</creatorcontrib><creatorcontrib>NAGY, F</creatorcontrib><creatorcontrib>CANADY, A</creatorcontrib><creatorcontrib>VON STOCKHAUSEN, H.-M</creatorcontrib><creatorcontrib>HERHOLZ, K</creatorcontrib><creatorcontrib>GATES, J</creatorcontrib><title>Intracranial EEG versus flumazenil and glucose PET in children with extratemporal lobe epilepsy</title><title>Neurology</title><addtitle>Neurology</addtitle><description>To compare abnormalities determined in 2-deoxy-2-[18F]fluoro-D-glucose (FDG) and [11C]flumazenil (FMZ) PET images with intracranial EEG data in patients with extratemporal lobe epilepsy. Although PET studies with FDG and FMZ are being used clinically to localize epileptogenic regions in patients with refractory epilepsy, the electrophysiologic significance of the identified PET abnormalities remains poorly understood. We studied 10 patients, mostly children (4 boys, 6 girls, aged 2 to 19 years; mean age, 11 years), who underwent FDG and FMZ PET scans, intracranial EEG monitoring, and cortical resection for intractable epilepsy. EEG electrode positions relative to the brain surface were determined from MRI image volumes. Cortical areas of abnormal glucose metabolism or FMZ binding were determined objectively based on asymmetry measures derived from homotopic cortical areas at three asymmetry thresholds. PET data were then coregistered with the MRI and overlaid on the MRI surface. A receiver operating characteristics (ROC) analysis was performed to determine the specificity and sensitivity of PET-defined abnormalities against the gold standard of intracranial EEG data. FMZ PET detected at least part of the seizure onset zone in all subjects, whereas FDG PET failed to detect the seizure onset region in two of 10 patients. The area under the ROC curves was higher for FMZ than FDG PET for both seizure onset (p = 0.01) and frequent interictal spiking (p = 0.04). Both FMZ and FDG PET showed poor performance for detection of rapid seizure spread (area under the ROC curve not significantly different from 0.5). [11C]flumazenil (FMZ) PET is significantly more sensitive than 2-deoxy-2-[18F]fluoro-D-glucose (FDG) PET for the detection of cortical regions of seizure onset and frequent spiking in patients with extratemporal lobe epilepsy, whereas both FDG and FMZ PET show low sensitivity in the detection of cortical areas of rapid seizure spread. The application of PET, in particular FMZ PET, in guiding subdural electrode placement in refractory extratemporal lobe epilepsy will enhance coverage of the epileptogenic zone.</description><subject>Adolescent</subject><subject>Biological and medical sciences</subject><subject>Blood Glucose - metabolism</subject><subject>Brain - metabolism</subject><subject>Brain - physiopathology</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Electroencephalography</subject><subject>Epilepsy - diagnosis</subject><subject>Female</subject><subject>Flumazenil</subject><subject>Fluorodeoxyglucose F18</subject><subject>Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy</subject><subject>Humans</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Nervous system (semeiology, syndromes)</subject><subject>Neurology</subject><subject>Osteoarticular system. Muscles</subject><subject>Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><subject>ROC Curve</subject><subject>Sensitivity and Specificity</subject><subject>Tomography, Emission-Computed</subject><issn>0028-3878</issn><issn>1526-632X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkEtP3DAQgC1UBMvSG-fKh4pTd_ErdnysUICVVsAB1N4sx5mAK-dRO-HRX19Xu1K5zBzm0yfNh9AZJWvKKLv4cbtdF2JN11TRA7SgBZMrydnPT2hBCCtXvFTlMTpJ6Rch-aj0ETqmRHJJhVggs-mnaF20vbcBV9U1foGY5oTbMHf2D_Q-YNs3-CnMbkiA76sH7Hvsnn1oIvT41U_PGN6yY4JuHGKWhKEGDKMPMKb3U3TY2pDg834v0eNV9XB5s9reXW8uv29Xjhd6ylMVDqyVwjWNdrVwGhhY0ZbU1RJ4qWWhitoxrZV2XDaK1URIWcv8Li0ZX6LznXeMw-8Z0mQ6nxyEYHsY5mQUKRWTosjgtx3o4pBShNaM0Xc2vhtKzL-gJgc1hTDU5KAZ_7L3znUHzQd4VzADX_eATc6GNpd0Pv3nGBel1PwvMYp-RQ</recordid><startdate>20000111</startdate><enddate>20000111</enddate><creator>MUZIK, O</creator><creator>DA SILVA, E. A</creator><creator>FROST, M</creator><creator>RITTER, F</creator><creator>WATSON, C</creator><creator>CHUGANI, H. T</creator><creator>JUHASZ, C</creator><creator>CHUGANI, D. C</creator><creator>SHAH, J</creator><creator>NAGY, F</creator><creator>CANADY, A</creator><creator>VON STOCKHAUSEN, H.-M</creator><creator>HERHOLZ, K</creator><creator>GATES, J</creator><general>Lippincott Williams &amp; Wilkins</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20000111</creationdate><title>Intracranial EEG versus flumazenil and glucose PET in children with extratemporal lobe epilepsy</title><author>MUZIK, O ; DA SILVA, E. A ; FROST, M ; RITTER, F ; WATSON, C ; CHUGANI, H. T ; JUHASZ, C ; CHUGANI, D. C ; SHAH, J ; NAGY, F ; CANADY, A ; VON STOCKHAUSEN, H.-M ; HERHOLZ, K ; GATES, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-c375ceaa64cdd9cb4c9e2ea4f81cb6e3896575bc29979c36d72b0466b65261823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Adolescent</topic><topic>Biological and medical sciences</topic><topic>Blood Glucose - metabolism</topic><topic>Brain - metabolism</topic><topic>Brain - physiopathology</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Electroencephalography</topic><topic>Epilepsy - diagnosis</topic><topic>Female</topic><topic>Flumazenil</topic><topic>Fluorodeoxyglucose F18</topic><topic>Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy</topic><topic>Humans</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Nervous system (semeiology, syndromes)</topic><topic>Neurology</topic><topic>Osteoarticular system. Muscles</topic><topic>Radiodiagnosis. Nmr imagery. Nmr spectrometry</topic><topic>ROC Curve</topic><topic>Sensitivity and Specificity</topic><topic>Tomography, Emission-Computed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MUZIK, O</creatorcontrib><creatorcontrib>DA SILVA, E. A</creatorcontrib><creatorcontrib>FROST, M</creatorcontrib><creatorcontrib>RITTER, F</creatorcontrib><creatorcontrib>WATSON, C</creatorcontrib><creatorcontrib>CHUGANI, H. T</creatorcontrib><creatorcontrib>JUHASZ, C</creatorcontrib><creatorcontrib>CHUGANI, D. C</creatorcontrib><creatorcontrib>SHAH, J</creatorcontrib><creatorcontrib>NAGY, F</creatorcontrib><creatorcontrib>CANADY, A</creatorcontrib><creatorcontrib>VON STOCKHAUSEN, H.-M</creatorcontrib><creatorcontrib>HERHOLZ, K</creatorcontrib><creatorcontrib>GATES, J</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neurology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MUZIK, O</au><au>DA SILVA, E. A</au><au>FROST, M</au><au>RITTER, F</au><au>WATSON, C</au><au>CHUGANI, H. T</au><au>JUHASZ, C</au><au>CHUGANI, D. C</au><au>SHAH, J</au><au>NAGY, F</au><au>CANADY, A</au><au>VON STOCKHAUSEN, H.-M</au><au>HERHOLZ, K</au><au>GATES, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intracranial EEG versus flumazenil and glucose PET in children with extratemporal lobe epilepsy</atitle><jtitle>Neurology</jtitle><addtitle>Neurology</addtitle><date>2000-01-11</date><risdate>2000</risdate><volume>54</volume><issue>1</issue><spage>171</spage><epage>179</epage><pages>171-179</pages><issn>0028-3878</issn><eissn>1526-632X</eissn><coden>NEURAI</coden><abstract>To compare abnormalities determined in 2-deoxy-2-[18F]fluoro-D-glucose (FDG) and [11C]flumazenil (FMZ) PET images with intracranial EEG data in patients with extratemporal lobe epilepsy. Although PET studies with FDG and FMZ are being used clinically to localize epileptogenic regions in patients with refractory epilepsy, the electrophysiologic significance of the identified PET abnormalities remains poorly understood. We studied 10 patients, mostly children (4 boys, 6 girls, aged 2 to 19 years; mean age, 11 years), who underwent FDG and FMZ PET scans, intracranial EEG monitoring, and cortical resection for intractable epilepsy. EEG electrode positions relative to the brain surface were determined from MRI image volumes. Cortical areas of abnormal glucose metabolism or FMZ binding were determined objectively based on asymmetry measures derived from homotopic cortical areas at three asymmetry thresholds. PET data were then coregistered with the MRI and overlaid on the MRI surface. A receiver operating characteristics (ROC) analysis was performed to determine the specificity and sensitivity of PET-defined abnormalities against the gold standard of intracranial EEG data. FMZ PET detected at least part of the seizure onset zone in all subjects, whereas FDG PET failed to detect the seizure onset region in two of 10 patients. The area under the ROC curves was higher for FMZ than FDG PET for both seizure onset (p = 0.01) and frequent interictal spiking (p = 0.04). Both FMZ and FDG PET showed poor performance for detection of rapid seizure spread (area under the ROC curve not significantly different from 0.5). [11C]flumazenil (FMZ) PET is significantly more sensitive than 2-deoxy-2-[18F]fluoro-D-glucose (FDG) PET for the detection of cortical regions of seizure onset and frequent spiking in patients with extratemporal lobe epilepsy, whereas both FDG and FMZ PET show low sensitivity in the detection of cortical areas of rapid seizure spread. The application of PET, in particular FMZ PET, in guiding subdural electrode placement in refractory extratemporal lobe epilepsy will enhance coverage of the epileptogenic zone.</abstract><cop>Hagerstown, MD</cop><pub>Lippincott Williams &amp; Wilkins</pub><pmid>10636144</pmid><doi>10.1212/WNL.54.1.171</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-3878
ispartof Neurology, 2000-01, Vol.54 (1), p.171-179
issn 0028-3878
1526-632X
language eng
recordid cdi_proquest_miscellaneous_70872645
source MEDLINE; Alma/SFX Local Collection; Journals@Ovid Complete
subjects Adolescent
Biological and medical sciences
Blood Glucose - metabolism
Brain - metabolism
Brain - physiopathology
Child
Child, Preschool
Electroencephalography
Epilepsy - diagnosis
Female
Flumazenil
Fluorodeoxyglucose F18
Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy
Humans
Investigative techniques, diagnostic techniques (general aspects)
Male
Medical sciences
Nervous system (semeiology, syndromes)
Neurology
Osteoarticular system. Muscles
Radiodiagnosis. Nmr imagery. Nmr spectrometry
ROC Curve
Sensitivity and Specificity
Tomography, Emission-Computed
title Intracranial EEG versus flumazenil and glucose PET in children with extratemporal lobe epilepsy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A19%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intracranial%20EEG%20versus%20flumazenil%20and%20glucose%20PET%20in%20children%20with%20extratemporal%20lobe%20epilepsy&rft.jtitle=Neurology&rft.au=MUZIK,%20O&rft.date=2000-01-11&rft.volume=54&rft.issue=1&rft.spage=171&rft.epage=179&rft.pages=171-179&rft.issn=0028-3878&rft.eissn=1526-632X&rft.coden=NEURAI&rft_id=info:doi/10.1212/WNL.54.1.171&rft_dat=%3Cproquest_cross%3E70872645%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70872645&rft_id=info:pmid/10636144&rfr_iscdi=true