Numerical Simulations of Stochastic Circulatory Models

Properties of two of the stochastic circulatory models theoretically introduced by Smithet al., 1997,Bull. Math. Biol.59, 1–22 were investigated. The models assumed the gamma distribution of the cycle time under either the geometric or Poisson elimination scheme. The reason for selecting these model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of mathematical biology 1999-03, Vol.61 (2), p.365-377
Hauptverfasser: Wimmer, G., Dedík, L., Michal, M., Mudríková, A., Ďurišová, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 377
container_issue 2
container_start_page 365
container_title Bulletin of mathematical biology
container_volume 61
creator Wimmer, G.
Dedík, L.
Michal, M.
Mudríková, A.
Ďurišová, M.
description Properties of two of the stochastic circulatory models theoretically introduced by Smithet al., 1997,Bull. Math. Biol.59, 1–22 were investigated. The models assumed the gamma distribution of the cycle time under either the geometric or Poisson elimination scheme. The reason for selecting these models was the fact that the probability density functions of the residence time of these models are formally similar to those of the Bateman and gamma-like function models, i.e., the two common deterministic models. Using published data, the analytical forms of the probability density functions of the residence time and the distributions of the simulated values of the residence time were determined on the basis of the deterministic models and the stochastic circulatory models, respectively. The Kolmogorov–Smirnov test revealed that even for 1000 xenobiotic particles, i.e., a relatively small number if the particles imply drug molecules, the probability density functions of the residence time based on the deterministic models closely matched the distributions of the simulated values of the residence time obtained on the basis of the stochastic circulatory models, provided that parameters of the latter models fulfilled selected conditions.
doi_str_mv 10.1006/bulm.1998.0094
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70868604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092824098900945</els_id><sourcerecordid>70868604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-502da5df441acf7febf1d2195dcdd5067486dc92a4061c811dd83e66776e51803</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMotlavHmXx4G3rJJvNx1GKX1D1UD2HNMliyu6mJrtC_727tCAIngZmnvdleBC6xDDHAOx23dfNHEsp5gCSHqEpLgnJJQNyjKbDiuSCUJigs5Q2AMBlIU_RBHMhCoLLKWKvfeOiN7rOVr7pa9350KYsVNmqC-ZTp86bbOGjGU8h7rKXYF2dztFJpevkLg5zhj4e7t8XT_ny7fF5cbfMTcF4l5dArC5tRSnWpuKVW1fYEixLa6wtgXEqmDWSaAoMG4GxtaJwjHHOXIkFFDN0s-_dxvDVu9Spxifj6lq3LvRJcRBMMKADeP0H3IQ-tsNvilMMjBZEDtB8D5kYUoquUtvoGx13CoMadapRpxp1qlHnELg6tPbrxtlf_OBvAMQeGJy4b--iSsa71jjrozOdssH_1_0DwkWDBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>741064329</pqid></control><display><type>article</type><title>Numerical Simulations of Stochastic Circulatory Models</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Wimmer, G. ; Dedík, L. ; Michal, M. ; Mudríková, A. ; Ďurišová, M.</creator><creatorcontrib>Wimmer, G. ; Dedík, L. ; Michal, M. ; Mudríková, A. ; Ďurišová, M.</creatorcontrib><description>Properties of two of the stochastic circulatory models theoretically introduced by Smithet al., 1997,Bull. Math. Biol.59, 1–22 were investigated. The models assumed the gamma distribution of the cycle time under either the geometric or Poisson elimination scheme. The reason for selecting these models was the fact that the probability density functions of the residence time of these models are formally similar to those of the Bateman and gamma-like function models, i.e., the two common deterministic models. Using published data, the analytical forms of the probability density functions of the residence time and the distributions of the simulated values of the residence time were determined on the basis of the deterministic models and the stochastic circulatory models, respectively. The Kolmogorov–Smirnov test revealed that even for 1000 xenobiotic particles, i.e., a relatively small number if the particles imply drug molecules, the probability density functions of the residence time based on the deterministic models closely matched the distributions of the simulated values of the residence time obtained on the basis of the stochastic circulatory models, provided that parameters of the latter models fulfilled selected conditions.</description><identifier>ISSN: 0092-8240</identifier><identifier>EISSN: 1522-9602</identifier><identifier>DOI: 10.1006/bulm.1998.0094</identifier><identifier>PMID: 17883215</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Animals ; Blood Circulation - physiology ; Computer Simulation ; Guinea Pigs ; Humans ; Models, Cardiovascular ; Stochastic Processes ; Studies ; Xenobiotics - blood</subject><ispartof>Bulletin of mathematical biology, 1999-03, Vol.61 (2), p.365-377</ispartof><rights>1999 Society for Mathematical Biology</rights><rights>Society for Mathematical Biology 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-502da5df441acf7febf1d2195dcdd5067486dc92a4061c811dd83e66776e51803</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17883215$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wimmer, G.</creatorcontrib><creatorcontrib>Dedík, L.</creatorcontrib><creatorcontrib>Michal, M.</creatorcontrib><creatorcontrib>Mudríková, A.</creatorcontrib><creatorcontrib>Ďurišová, M.</creatorcontrib><title>Numerical Simulations of Stochastic Circulatory Models</title><title>Bulletin of mathematical biology</title><addtitle>Bull Math Biol</addtitle><description>Properties of two of the stochastic circulatory models theoretically introduced by Smithet al., 1997,Bull. Math. Biol.59, 1–22 were investigated. The models assumed the gamma distribution of the cycle time under either the geometric or Poisson elimination scheme. The reason for selecting these models was the fact that the probability density functions of the residence time of these models are formally similar to those of the Bateman and gamma-like function models, i.e., the two common deterministic models. Using published data, the analytical forms of the probability density functions of the residence time and the distributions of the simulated values of the residence time were determined on the basis of the deterministic models and the stochastic circulatory models, respectively. The Kolmogorov–Smirnov test revealed that even for 1000 xenobiotic particles, i.e., a relatively small number if the particles imply drug molecules, the probability density functions of the residence time based on the deterministic models closely matched the distributions of the simulated values of the residence time obtained on the basis of the stochastic circulatory models, provided that parameters of the latter models fulfilled selected conditions.</description><subject>Animals</subject><subject>Blood Circulation - physiology</subject><subject>Computer Simulation</subject><subject>Guinea Pigs</subject><subject>Humans</subject><subject>Models, Cardiovascular</subject><subject>Stochastic Processes</subject><subject>Studies</subject><subject>Xenobiotics - blood</subject><issn>0092-8240</issn><issn>1522-9602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LAzEQhoMotlavHmXx4G3rJJvNx1GKX1D1UD2HNMliyu6mJrtC_727tCAIngZmnvdleBC6xDDHAOx23dfNHEsp5gCSHqEpLgnJJQNyjKbDiuSCUJigs5Q2AMBlIU_RBHMhCoLLKWKvfeOiN7rOVr7pa9350KYsVNmqC-ZTp86bbOGjGU8h7rKXYF2dztFJpevkLg5zhj4e7t8XT_ny7fF5cbfMTcF4l5dArC5tRSnWpuKVW1fYEixLa6wtgXEqmDWSaAoMG4GxtaJwjHHOXIkFFDN0s-_dxvDVu9Spxifj6lq3LvRJcRBMMKADeP0H3IQ-tsNvilMMjBZEDtB8D5kYUoquUtvoGx13CoMadapRpxp1qlHnELg6tPbrxtlf_OBvAMQeGJy4b--iSsa71jjrozOdssH_1_0DwkWDBg</recordid><startdate>19990301</startdate><enddate>19990301</enddate><creator>Wimmer, G.</creator><creator>Dedík, L.</creator><creator>Michal, M.</creator><creator>Mudríková, A.</creator><creator>Ďurišová, M.</creator><general>Elsevier Ltd</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope></search><sort><creationdate>19990301</creationdate><title>Numerical Simulations of Stochastic Circulatory Models</title><author>Wimmer, G. ; Dedík, L. ; Michal, M. ; Mudríková, A. ; Ďurišová, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-502da5df441acf7febf1d2195dcdd5067486dc92a4061c811dd83e66776e51803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Animals</topic><topic>Blood Circulation - physiology</topic><topic>Computer Simulation</topic><topic>Guinea Pigs</topic><topic>Humans</topic><topic>Models, Cardiovascular</topic><topic>Stochastic Processes</topic><topic>Studies</topic><topic>Xenobiotics - blood</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wimmer, G.</creatorcontrib><creatorcontrib>Dedík, L.</creatorcontrib><creatorcontrib>Michal, M.</creatorcontrib><creatorcontrib>Mudríková, A.</creatorcontrib><creatorcontrib>Ďurišová, M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Bulletin of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wimmer, G.</au><au>Dedík, L.</au><au>Michal, M.</au><au>Mudríková, A.</au><au>Ďurišová, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Simulations of Stochastic Circulatory Models</atitle><jtitle>Bulletin of mathematical biology</jtitle><addtitle>Bull Math Biol</addtitle><date>1999-03-01</date><risdate>1999</risdate><volume>61</volume><issue>2</issue><spage>365</spage><epage>377</epage><pages>365-377</pages><issn>0092-8240</issn><eissn>1522-9602</eissn><abstract>Properties of two of the stochastic circulatory models theoretically introduced by Smithet al., 1997,Bull. Math. Biol.59, 1–22 were investigated. The models assumed the gamma distribution of the cycle time under either the geometric or Poisson elimination scheme. The reason for selecting these models was the fact that the probability density functions of the residence time of these models are formally similar to those of the Bateman and gamma-like function models, i.e., the two common deterministic models. Using published data, the analytical forms of the probability density functions of the residence time and the distributions of the simulated values of the residence time were determined on the basis of the deterministic models and the stochastic circulatory models, respectively. The Kolmogorov–Smirnov test revealed that even for 1000 xenobiotic particles, i.e., a relatively small number if the particles imply drug molecules, the probability density functions of the residence time based on the deterministic models closely matched the distributions of the simulated values of the residence time obtained on the basis of the stochastic circulatory models, provided that parameters of the latter models fulfilled selected conditions.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>17883215</pmid><doi>10.1006/bulm.1998.0094</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0092-8240
ispartof Bulletin of mathematical biology, 1999-03, Vol.61 (2), p.365-377
issn 0092-8240
1522-9602
language eng
recordid cdi_proquest_miscellaneous_70868604
source MEDLINE; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Animals
Blood Circulation - physiology
Computer Simulation
Guinea Pigs
Humans
Models, Cardiovascular
Stochastic Processes
Studies
Xenobiotics - blood
title Numerical Simulations of Stochastic Circulatory Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T20%3A27%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Simulations%20of%20Stochastic%20Circulatory%20Models&rft.jtitle=Bulletin%20of%20mathematical%20biology&rft.au=Wimmer,%20G.&rft.date=1999-03-01&rft.volume=61&rft.issue=2&rft.spage=365&rft.epage=377&rft.pages=365-377&rft.issn=0092-8240&rft.eissn=1522-9602&rft_id=info:doi/10.1006/bulm.1998.0094&rft_dat=%3Cproquest_cross%3E70868604%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=741064329&rft_id=info:pmid/17883215&rft_els_id=S0092824098900945&rfr_iscdi=true